A252834 Number of n X 6 nonnegative integer arrays with upper left 0 and every value within 2 of its king move distance from the upper left and every value increasing by 0 or 1 with every step right, diagonally se or down.
16, 85, 529, 3365, 18528, 78674, 244131, 569420, 1070036, 1750150, 2610438, 3650950, 4871686, 6272646, 7853830, 9615238, 11556870, 13678726, 15980806, 18463110, 21125638, 23968390, 26991366, 30194566, 33577990, 37141638, 40885510
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1..1..2..3....0..1..2..2..3..4....0..1..2..3..3..3....0..1..2..2..3..4 ..0..1..1..2..2..3....1..1..2..3..3..4....1..1..2..3..3..3....1..1..2..2..3..4 ..1..1..1..2..2..3....1..1..2..3..3..4....1..2..2..3..3..3....1..2..2..3..3..4 ..1..1..1..2..2..3....1..2..2..3..4..4....2..2..3..3..3..4....1..2..3..3..3..4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 6 of A252836.
Formula
Empirical: a(n) = 90112*n^2 - 1032064*n + 3059590 for n>9.
Conjectures from Colin Barker, Dec 07 2018: (Start)
G.f.: x*(16 + 37*x + 322*x^2 + 2017*x^3 + 9935*x^4 + 32656*x^5 + 60328*x^6 + 54521*x^7 + 15495*x^8 + 4171*x^9 + 676*x^10 + 50*x^11) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>12.
(End)