A252864 Number of pairs in generation n of the tree T defined in Comments.
1, 1, 2, 3, 5, 8, 12, 18, 25, 35, 51, 75, 110, 161, 236, 346, 507, 743, 1089, 1596, 2339, 3428, 5024, 7363, 10791, 15815, 23178, 33969, 49784, 72962, 106931
Offset: 0
Examples
Ordered pairs (i,j) are abbreviated as i,j in this list of 7 generations of T: g(0): 0,0 g(1): 0,1 g(2): 0,2 1,1 g(3): 0,3 1,2 2,2 g(4): 0,4 1,3 2,3 2,4 3,3 g(5): 0,5 1,4 2,5 3,4 3,5 3,6 4,4 4,6 g(6): 0,6 1,5 2,6 3,7 4,5 4,7 4,8 5,5 5,7 5,8 6,9 6,10
Links
- Christian Ballot, Clark Kimberling, and Peter J. C. Moses, Linear Recurrences Originating From Polynomial Trees, Fibonacci Quart. 55 (2017), no. 5, 15-27.
Programs
-
Mathematica
t = NestList[DeleteDuplicates[Flatten[Map[{# + {0, 1}, {Last[#], Total[#]}} &, #], 1]] &, {{0, 0}}, 30]; s[0] = t[[1]]; s[n_] := s[n] = Union[t[[n + 1]], s[n - 1]]; g[n_] := Complement[s[n], s[n - 1]]; g[0] = {{0, 0}}; Column[Table[g[z], {z, 0, 9}]] Table[Length[g[z]], {z, 0, 10}]
Formula
Conjecture: |g(n)| = |g(n-1)| + |g(n-3)| for n >= 12.
Empirical g.f.: (x-1)*(x^2+x+1)*(x^8+2*x^7+2*x^6+2*x^5+x^4+x^3+x^2+1) / (x^3+x-1). - Colin Barker, Feb 01 2015
Comments