A252868 Squarefree version of A252867.
1, 2, 3, 10, 21, 5, 6, 35, 22, 15, 14, 33, 7, 30, 77, 26, 105, 13, 42, 65, 66, 91, 11, 70, 143, 210, 187, 39, 55, 78, 385, 34, 165, 182, 51, 110, 273, 85, 154, 195, 119, 330, 17, 231, 170, 429, 238, 715, 102, 455, 374, 1365, 38, 1155, 442, 57, 770, 663, 95, 462, 1105, 114, 1001, 255
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015 and J. Int. Seq. 18 (2015) 15.6.7.
Programs
-
Mathematica
(* b = A019565, c = A252867 *) b[n_] := Times @@ Prime[Flatten[Position[#, 1]]]&[Reverse[IntegerDigits[n, 2]]]; c[n_] := c[n] = If[n<3, n, For[k=3, True, k++, If[FreeQ[Array[c, n-1], k], If[BitAnd[k, c[n-2]] >= 1 && BitAnd[k, c[n-1]] == 0, Return[k]]]]]; a[n_] := b[c[n-1]]; Array[a, 64] (* Jean-François Alcover, Oct 03 2018 *)
-
PARI
invecn(v, k, x)=for(i=1, k, if(v[i]==x, return(i))); 0 squarefree(n)=local(r=1,i=1);while(n>0,if(n%2,r*=prime(i));i++;n\=2);r alist(n)=local(v=vector(n, i, i-1), x); for(k=4, n, x=3; while(invecn(v, k-1, x)||!bitand(v[k-2], x)||bitand(v[k-1], x), x++); v[k]=x); vector(n,i,squarefree(v[i]))
-
Python
from operator import mul from functools import reduce from sympy import prime def A019565(n): return reduce(mul,(prime(i+1) for i,v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 A252868_list, l1, l2, s, b = [1,2,3], 2, 1, 3, set() for _ in range(10**4): i = s while True: if not (i in b or i & l1) and i & l2: A252868_list.append(A019565(i)) l2, l1 = l1, i b.add(i) while s in b: b.remove(s) s += 1 break i += 1 # Chai Wah Wu, Dec 25 2014
Comments