This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A252890 #10 Dec 25 2014 03:58:28 %S A252890 1,1,2,1,1,1,4,2,1,1,1,1,2,1,1,1,2,3,1,1,3,1,1,1,1,1,1,1,1,2,2,2,1,1, %T A252890 1,1,1,6,1,1,4,1,3,1,1,2,7,1,1,2,1,1,1,1,2,1,9,1,1,1,1,1,1,1,1,1,1,4, %U A252890 1,6,1,3,4,1,2,2,1,1,1,1,1,1,4,1,1,1,1 %N A252890 Number of times the greatest prime factor of n^2 + 1 is a factor in all numbers <= n. %C A252890 The greatest prime factor is counted with multiplicity (see the example). %C A252890 a(n)=1 iff n^2 + 1 is prime. %H A252890 Michel Lagneau, <a href="/A252890/b252890.txt">Table of n, a(n) for n = 1..10000</a> %e A252890 a(7)=4 because 7^2 + 1 = 50 and 5 is 4 times a factor: %e A252890 2^2+1 = 5; %e A252890 3^2+1 = 10 = 2*5; %e A252890 7^2+1 = 50 = 2*5*5 (two times). %p A252890 with(numtheory): with(padic,ordp): %p A252890 f:= proc(n) local p ,q, n0; %p A252890 q:=factorset(n^2+1);n0:=nops(q);p:= q[n0]; %p A252890 add(ordp(k^2+1, p), k=1..n); %p A252890 end proc: %p A252890 seq(f(n), n=1.. 100); %p A252890 # Using code from Robert Israel adapted for this sequence. See A078897. %Y A252890 Cf. A089120, A014442, A078897. %K A252890 nonn %O A252890 1,3 %A A252890 _Michel Lagneau_, Dec 24 2014