A252922 a(n) = sigma(n-1) + sigma(n-2) + sigma(n-3), with a(1)=0, a(2)=1, a(3)=4.
0, 1, 4, 8, 14, 17, 25, 26, 35, 36, 46, 43, 58, 54, 66, 62, 79, 73, 88, 77, 101, 94, 110, 92, 120, 115, 133, 113, 138, 126, 158, 134, 167, 143, 165, 150, 193, 177, 189, 154, 206, 188, 228, 182, 224, 206, 234, 198, 244, 229, 274, 222, 263, 224, 272, 246, 312, 272, 290, 230, 318, 290, 326, 262, 327, 315, 355, 296
Offset: 1
Examples
a(5) = sigma(4) + sigma(3) + sigma(2) = 7 + 4 + 3 = 14. On the other hand a(5) = A024916(4) - A024916(1) = 15 - 1 = 14. ... Also, if written as a rectangular array T(j,k) with four columns the sequence begins: 0, 1, 4, 8; 14, 17, 25, 26; 35, 36, 46, 43; 58, 54, 66, 62; 79, 73, 88, 77; 101, 94, 110, 92; 120, 115, 133, 113; 138, 126, 158, 134; 167, 143, 165, 150; 193, 177, 189, 154; 206, 188, 228, 182; 224, 206, 234, 198; 244, 229, 274, 222; 263, 224, 272, 246; 312, 272, 290, 230; 318, 290, 326, 262; ... In this case T(2,1) = a(5) = 14.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
L:= [0,0,0,seq(numtheory:-sigma(n), n=1..100)]: L[1..101]+L[2..102]+L[3..103]; # Robert Israel, Dec 07 2016
-
Mathematica
a252922[n_] := Block[{f}, f[1] = 0; f[2] = 1; f[3] = 4; f[x_] := DivisorSigma[1, x - 1] + DivisorSigma[1, x - 2] + DivisorSigma[1, x - 3]; Table[f[i], {i, n}]]; a252922[68] (* Michael De Vlieger, Dec 27 2014 *)
-
PARI
v=concat([0,1,4],vector(100,n,sigma(n)+sigma(n+1)+sigma(n+2))) \\ Derek Orr, Dec 30 2014
Comments