cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A252930 T(n,k) = Number of n X k nonnegative integer arrays with upper left 0 and lower right n+k-6 and value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 5, 19, 33, 33, 19, 5, 15, 120, 413, 615, 413, 120, 15, 35, 483, 2859, 6997, 6997, 2859, 483, 35, 70, 1500, 13976, 53950, 84910, 53950, 13976, 1500, 70, 126, 3923, 54199, 315198, 762227, 762227, 315198, 54199, 3923, 126, 210
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2014

Keywords

Comments

Table starts
...0....0......0........0.........1...........5...........15............35
...0....0......0........1........19.........120..........483..........1500
...0....0......1.......33.......413........2859........13976.........54199
...0....1.....33......615......6997.......53950.......315198.......1499394
...1...19....413.....6997.....84910......762227......5385305......31454256
...5..120...2859....53950....762227.....8241540.....71297441.....512868867
..15..483..13976...315198...5385305....71297441....759337545....6725497344
..35.1500..54199..1499394..31454256...512868867...6725497344...73117894428
..70.3923.177848..6083808.157376166..3160111147..50869309436..675539536773
.126.9069.513905.21733215.692347393.17063990547.335549742230.5411459549576

Examples

			Some solutions for n=4, k=4:
..0..1..1..1....0..0..0..0....0..0..0..0....0..1..1..2....0..0..0..1
..1..1..1..1....1..1..1..1....0..0..0..1....1..1..2..2....0..1..1..2
..1..1..2..2....1..1..1..1....1..1..1..1....1..1..2..2....0..1..1..2
..1..2..2..2....1..1..1..2....1..2..2..2....1..2..2..2....1..2..2..2
		

Crossrefs

Column 1 is A000332(n-1), other columns are A252924 - A252929. Cf. A252923 (diagonal); A252876 (lower right n+k-4), A252976 (lower right n+k-5).

Formula

Empirical for column k:
k=1: a(n) = (1/24)*n^4 - (5/12)*n^3 + (35/24)*n^2 - (25/12)*n + 1.
k=2: [polynomial of degree 8]
k=3: [polynomial of degree 12]
k=4: [polynomial of degree 16]
k=5: [polynomial of degree 20]
k=6: [polynomial of degree 24]
k=7: [polynomial of degree 28]
Empirical: with "n+k-3" instead of "n+k-6" T(n,k) = binomial(n+k,k) - 2.
Showing 1-1 of 1 results.