cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252944 Fermat pseudoprimes that are not Carmichael numbers and have only composite XOR couples as defined in A182108.

This page as a plain text file.
%I A252944 #11 Sep 08 2022 08:46:10
%S A252944 23377,31417,49981,74665,220729,435671,679729,769757,852481,915981,
%T A252944 1016801,1023121,1128121,1397419,2008597,2987167,3073357,4014361
%N A252944 Fermat pseudoprimes that are not Carmichael numbers and have only composite XOR couples as defined in A182108.
%C A252944 There are 433 Fermat pseudoprimes that aren't Carmichael numbers below 2^22, but only 18 have this property. Carmichael numbers that have this property are in A182116.
%o A252944 (Magma)
%o A252944 function IsClardynum(X, i)
%o A252944   if i eq 1 then
%o A252944     return true;
%o A252944   else
%o A252944     xornum:=2^i - 2;
%o A252944     xorcouple:=BitwiseXor(X, xornum);
%o A252944     if (IsPrime(xorcouple)) then
%o A252944        return false;
%o A252944     else
%o A252944        return IsClardynum(X, i-1);
%o A252944     end if;
%o A252944   end if;
%o A252944 end function;
%o A252944 for n:= 3 to 1052503 by 2 do
%o A252944   if (IsOne(2^(n-1) mod n)
%o A252944       and not IsPrime(n)
%o A252944       and not n mod CarmichaelLambda(n) eq 1
%o A252944       and IsClardynum(n,Ilog2(n)))
%o A252944       then n;
%o A252944   end if;
%o A252944 end for;
%Y A252944 Cf. A153508, A001567, A252943, A182108, A182116.
%K A252944 nonn,more
%O A252944 1,1
%A A252944 _Brad Clardy_, Dec 25 2014