A252978 Number of n X 3 nonnegative integer arrays with upper left 0 and lower right its king-move distance away minus 2 and every value increasing by 0 or 1 with every step right, diagonally se or down.
1, 1, 1, 33, 266, 851, 1836, 3221, 5006, 7191, 9776, 12761, 16146, 19931, 24116, 28701, 33686, 39071, 44856, 51041, 57626, 64611, 71996, 79781, 87966, 96551, 105536, 114921, 124706, 134891, 145476, 156461, 167846, 179631, 191816, 204401, 217386
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0....0..0..0....0..0..0....0..1..1....0..0..1....0..0..0....0..0..1 ..0..0..0....0..0..0....0..1..1....0..1..1....0..0..1....0..0..1....0..1..1 ..0..1..1....0..0..1....0..1..1....0..1..1....0..0..1....0..0..1....0..1..1 ..1..1..1....0..0..1....1..1..1....0..1..1....0..1..1....1..1..1....0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A252983.
Formula
Empirical: a(n) = 200*n^2 - 1615*n + 3341 for n>4.
Conjectures from Colin Barker, Dec 07 2018: (Start)
G.f.: x*(1 - 2*x + x^2 + 32*x^3 + 169*x^4 + 151*x^5 + 48*x^6) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>7.
(End)