A252980 Number of n X 5 nonnegative integer arrays with upper left 0 and lower right its king-move distance away minus 2 and every value increasing by 0 or 1 with every step right, diagonally se or down.
6, 41, 266, 1247, 4657, 67537, 433401, 1481460, 3510600, 6637020, 10878576, 16235268, 22707096, 30294060, 38996160, 48813396, 59745768, 71793276, 84955920, 99233700, 114626616, 131134668, 148757856, 167496180, 187349640, 208318236
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1..1..2....0..0..0..0..1....0..0..0..0..0....0..1..1..1..1 ..0..0..1..1..2....1..1..1..1..1....0..1..1..1..1....0..1..1..1..1 ..1..1..1..1..2....1..1..1..1..2....1..1..1..2..2....0..1..1..1..1 ..1..1..1..1..2....1..2..2..2..2....1..1..2..2..2....0..1..2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A252983.
Formula
Empirical: a(n) = 557568*n^2 - 7467372*n + 25553940 for n>8.
Conjectures from Colin Barker, Mar 20 2018: (Start)
G.f.: x*(6 + 23*x + 161*x^2 + 566*x^3 + 1673*x^4 + 57041*x^5 + 243514*x^6 + 379211*x^7 + 298886*x^8 + 116199*x^9 + 17856*x^10) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>11.
(End)
Comments