A252983 T(n,k)=Number of nXk nonnegative integer arrays with upper left 0 and lower right its king-move distance away minus 2 and every value increasing by 0 or 1 with every step right, diagonally se or down.
0, 0, 0, 1, 0, 1, 3, 1, 1, 3, 6, 13, 1, 13, 6, 10, 41, 33, 33, 41, 10, 15, 85, 266, 68, 266, 85, 15, 21, 145, 851, 1247, 1247, 851, 145, 21, 28, 221, 1836, 8487, 4657, 8487, 1836, 221, 28, 36, 313, 3221, 27905, 67537, 67537, 27905, 3221, 313, 36, 45, 421, 5006, 62977
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..1..1....0..0..0..0....0..0..0..1....0..0..0..0....0..0..1..1 ..0..1..1..1....0..0..0..0....0..0..0..1....0..0..0..1....0..1..1..1 ..0..1..1..1....0..0..1..1....0..0..0..1....0..0..1..1....1..1..1..1 ..0..1..1..1....0..1..1..1....0..0..1..1....0..0..1..1....1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..480
Formula
Empirical for column k:
k=1: a(n) = (1/2)*n^2 - (3/2)*n + 1
k=2: a(n) = 8*n^2 - 44*n + 61 for n>2
k=3: a(n) = 200*n^2 - 1615*n + 3341 for n>4
k=4: a(n) = 8192*n^2 - 87808*n + 241153 for n>6
k=5: a(n) = 557568*n^2 - 7467372*n + 25553940 for n>8
k=6: a(n) = 63438848*n^2 - 1019729920*n + 4176308004 for n>10
k=7: a(n) = 12103190528*n^2 - 226960984822*n + 1081747760523 for n>12
Comments