cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252983 T(n,k)=Number of nXk nonnegative integer arrays with upper left 0 and lower right its king-move distance away minus 2 and every value increasing by 0 or 1 with every step right, diagonally se or down.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 3, 1, 1, 3, 6, 13, 1, 13, 6, 10, 41, 33, 33, 41, 10, 15, 85, 266, 68, 266, 85, 15, 21, 145, 851, 1247, 1247, 851, 145, 21, 28, 221, 1836, 8487, 4657, 8487, 1836, 221, 28, 36, 313, 3221, 27905, 67537, 67537, 27905, 3221, 313, 36, 45, 421, 5006, 62977
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2014

Keywords

Comments

Table starts
..0...0....1......3.......6........10..........15............21.............28
..0...0....1.....13......41........85.........145...........221............313
..1...1....1.....33.....266.......851........1836..........3221...........5006
..3..13...33.....68....1247......8487.......27905.........62977.........114433
..6..41..266...1247....4657.....67537......433401.......1481460........3510600
.10..85..851...8487...67537....432842.....5672484......36112108......129234988
.15.145.1836..27905..433401...5672484....60650883.....766674140.....4970634131
.21.221.3221..62977.1481460..36112108...766674140...13458882036...170090480091
.28.313.5006.114433.3510600.129234988..4970634131..170090480091..4857082197177
.36.421.7191.182273.6637020.322183180.18692194423.1139074556531.62656851440792

Examples

			Some solutions for n=4 k=4
..0..0..1..1....0..0..0..0....0..0..0..1....0..0..0..0....0..0..1..1
..0..1..1..1....0..0..0..0....0..0..0..1....0..0..0..1....0..1..1..1
..0..1..1..1....0..0..1..1....0..0..0..1....0..0..1..1....1..1..1..1
..0..1..1..1....0..1..1..1....0..0..1..1....0..0..1..1....1..1..1..1
		

Crossrefs

Column 1 is A000217(n-2)
Column 2 is A102083(n-3)

Formula

Empirical for column k:
k=1: a(n) = (1/2)*n^2 - (3/2)*n + 1
k=2: a(n) = 8*n^2 - 44*n + 61 for n>2
k=3: a(n) = 200*n^2 - 1615*n + 3341 for n>4
k=4: a(n) = 8192*n^2 - 87808*n + 241153 for n>6
k=5: a(n) = 557568*n^2 - 7467372*n + 25553940 for n>8
k=6: a(n) = 63438848*n^2 - 1019729920*n + 4176308004 for n>10
k=7: a(n) = 12103190528*n^2 - 226960984822*n + 1081747760523 for n>12