A253009 Number of nX6 nonnegative integer arrays with upper left 0 and lower right its king-move distance away minus 3 and every value increasing by 0 or 1 with every step right, diagonally se or down.
10, 85, 632, 3423, 14795, 54219, 2327062, 43197859, 395069496, 2063349297, 7250116841, 19242081848, 41884052188, 79190458776, 135212633776, 214009464108, 319640931500, 456167117868, 627648109484, 838143992620
Offset: 1
Keywords
Examples
Some solutions for n=6 ..0..0..0..0..1..1....0..0..0..0..0..1....0..0..0..0..1..1....0..0..0..0..0..1 ..0..0..0..0..1..1....0..0..0..1..1..1....0..0..0..0..1..1....0..0..0..0..1..1 ..0..0..0..0..1..1....0..0..0..1..1..2....0..0..0..1..1..1....0..0..0..0..1..1 ..0..1..1..1..1..1....1..1..1..1..1..2....0..1..1..1..2..2....0..0..0..1..1..2 ..1..1..1..1..2..2....1..1..1..1..1..2....1..1..1..1..2..2....1..1..1..1..1..2 ..1..1..2..2..2..2....1..1..2..2..2..2....1..1..1..1..2..2....2..2..2..2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (2030043136/3)*n^3 - 19063373824*n^2 + (545623168640/3)*n - 587442631380 for n>15
Comments