A253011 T(n,k)=Number of nXk nonnegative integer arrays with upper left 0 and lower right its king-move distance away minus 3 and every value increasing by 0 or 1 with every step right, diagonally se or down.
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 4, 1, 0, 1, 4, 10, 19, 1, 1, 19, 10, 20, 85, 54, 1, 54, 85, 20, 35, 231, 632, 124, 124, 632, 231, 35, 56, 489, 2902, 3423, 250, 3423, 2902, 489, 56, 84, 891, 8416, 33533, 14795, 14795, 33533, 8416, 891, 84, 120, 1469, 18770, 158877, 309990
Offset: 1
Examples
Some solutions for n=6 k=4 ..0..0..1..1....0..0..0..1....0..0..1..2....0..0..0..1....0..0..0..0 ..0..0..1..2....1..1..1..1....1..1..1..2....0..0..0..1....0..0..0..0 ..1..1..1..2....1..1..2..2....1..1..1..2....0..0..0..1....0..0..0..1 ..1..1..1..2....1..1..2..2....1..1..1..2....0..0..0..1....0..1..1..1 ..1..1..1..2....1..2..2..2....1..2..2..2....0..0..1..1....1..1..2..2 ..2..2..2..2....2..2..2..2....1..2..2..2....1..1..1..2....1..1..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..480
Formula
Empirical for column k:
k=1: a(n) = (1/6)*n^3 - 1*n^2 + (11/6)*n - 1
k=2: a(n) = (16/3)*n^3 - 56*n^2 + (590/3)*n - 231 for n>3
k=3: a(n) = (800/3)*n^3 - 3980*n^2 + (60442/3)*n - 34576 for n>6
k=4: a(n) = (65536/3)*n^3 - 422912*n^2 + (8343128/3)*n - 6208382 for n>9
k=5: a(n) = 2973696*n^3 - 70716096*n^2 + 570494664*n - 1560617160 for n>12
k=6: [polynomial of degree 3] for n>15
k=7: [polynomial of degree 3] for n>18
Comments