cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253015 Sequence of determinants of matrices based on the digits of nonnegative integers.

This page as a plain text file.
%I A253015 #32 Oct 06 2018 03:55:36
%S A253015 0,1,2,3,4,5,6,7,8,9,-1,1,-1,-5,-11,-19,-29,-41,-55,-71,-4,-1,4,1,-4,
%T A253015 -11,-20,-31,-44,-59,-9,-5,1,9,5,-1,-9,-19,-31,-45,-16,-11,-4,5,16,11,
%U A253015 4,-5,-16
%N A253015 Sequence of determinants of matrices based on the digits of nonnegative integers.
%C A253015 A given nonnegative integer is transformed into a square matrix whose order equals the quantity of the number's digits. Each element of the main diagonal is a digit of this original number, while other elements are calculated from this diagonal. The determinant of this matrix is the element of the sequence.
%H A253015 Filipi R. de Oliveira, <a href="/A253015/b253015.txt">Table of n, a(n) for n = 0..999</a>
%F A253015 a(n) = det(B) where B is the n X n matrix with B(i,i) given by the i-th digit of n, B(i,j) = abs(B(i,j-1)-B(i+1,j)) if i < j and B(i,j) = B(i-1,j) + B(i,j+1) if i > j.
%e A253015 For n=124, a(124)=2, as follows:
%e A253015 B(1,1) = 1;
%e A253015 B(2,2) = 2;
%e A253015 B(3,3) = 4;
%e A253015 B(1,2) = abs(B(1,1) - B(2,2)) = abs(1-2) = 1;
%e A253015 B(2,3) = abs(B(2,2) - B(3,3)) = abs(2-4) = 2;
%e A253015 B(1,3) = abs(B(1,2) - B(2,3)) = abs(1-1) = 1;
%e A253015 B(2,1) = B(1,1) + B(2,2) = 1 + 2 = 3;
%e A253015 B(3,2) = B(2,2) + B(3,3) = 2 + 4 = 6;
%e A253015 B(3,1) = B(2,1) + B(3,2) = 3 + 6 = 9.
%e A253015 Thus,
%e A253015 _______|1 1 1|
%e A253015 B(124)=|3 2 2| --> det(B(124)) = a(124) = 2.
%e A253015 _______|9 6 4|
%Y A253015 See A227876, since the process of matrix construction is this so-called "pyramidalization".
%K A253015 sign,base,easy,dumb
%O A253015 0,3
%A A253015 _Filipi R. de Oliveira_, Dec 25 2014