A253047 Start with the natural numbers 1,2,3,...; interchange 2*prime(i) and 3*prime(i+1) for each i, and interchange prime(prime(i)) with prime(2*prime(i)) for each i.
1, 2, 7, 9, 13, 15, 3, 8, 4, 21, 29, 12, 5, 33, 6, 16, 43, 18, 19, 20, 10, 39, 23, 24, 25, 51, 27, 28, 11, 30, 79, 32, 14, 57, 35, 36, 37, 69, 22, 40, 101, 42, 17, 44, 45, 87, 47, 48, 49, 50, 26, 52, 53, 54, 55, 56, 34, 93, 139, 60, 61, 111, 63
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- A. B. Frizell, Certain non-enumerable sets of infinite permutations. Bull. Amer. Math. Soc. 21 (1915), no. 10, 495-499.
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Maple
f:= proc(t) local r; if t mod 2 = 0 and isprime(t/2) then 3*nextprime(t/2) elif t mod 3 = 0 and isprime(t/3) then 2*prevprime(t/3) elif isprime(t) then r:= numtheory:-pi(t); if isprime(r) then ithprime(2*r) elif r mod 2 = 0 and isprime(r/2) then ithprime(r/2) else t fi else t fi end proc: seq(f(i),i=1..100); # Robert Israel, Dec 26 2014
-
Mathematica
f[t_] := Module[{r}, Which[EvenQ[t] && PrimeQ[t/2], 3 NextPrime[t/2], Divisible[t, 3] && PrimeQ[t/3], 2 NextPrime[t/3, -1], PrimeQ[t], r = PrimePi[t]; Which[PrimeQ[r], Prime[2r], EvenQ[r] && PrimeQ[r/2], Prime[r/2], True, t], True, t]]; Array[f, 100] (* Jean-François Alcover, Jul 27 2020, after Robert Israel *)
-
Python
from sympy import isprime, primepi, prevprime, nextprime, prime def A253047(n): if n <= 2: return n if n == 3: return 7 q2, r2 = divmod(n,2) if r2: q3, r3 = divmod(n,3) if r3: if isprime(n): m = primepi(n) if isprime(m): return prime(2*m) x, y = divmod(m,2) if not y: if isprime(x): return prime(x) return n if isprime(q3): return 2*prevprime(q3) return n if isprime(q2): return 3*nextprime(q2) return n # Chai Wah Wu, Dec 27 2014
Extensions
Definition supplied by Robert Israel, Dec 26 2014
Offset changed to 1 by Chai Wah Wu, Dec 27 2014
Comments