A253066 Number of odd terms in f^n, where f = 1/x+1+x+1/y+y/x+x*y.
1, 6, 6, 28, 6, 36, 28, 112, 6, 36, 36, 168, 28, 168, 112, 456, 6, 36, 36, 168, 36, 216, 168, 672, 28, 168, 168, 784, 112, 672, 456, 1816, 6, 36, 36, 168, 36, 216, 168, 672, 36, 216, 216, 1008, 168, 1008, 672, 2736, 28, 168, 168, 784, 168, 1008, 784, 3136, 112, 672, 672, 3136, 456, 2736, 1816, 7288
Offset: 0
Keywords
Examples
Here is the neighborhood f: [X, 0, X] [X, X, X] [0, X, 0] which contains a(1) = 6 ON cells.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..8191
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata
Crossrefs
Programs
-
Maple
C:=f->subs({x=1, y=1}, f); # Find number of ON cells in CA for generations 0 thru M defined by rule # that cell is ON iff number of ON cells in nbd at time n-1 was odd # where nbd is defined by a polynomial or Laurent series f(x, y). OddCA:=proc(f, M) global C; local n, a, i, f2, p; f2:=simplify(expand(f)) mod 2; a:=[]; p:=1; for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od: lprint([seq(a[i], i=1..nops(a))]); end; f:=1/x+1+x+1/y+y/x+x*y; OddCA(f, 130);
-
Mathematica
(* f = A253068 *) f[0] = 1; f[n_] := ((-2)^n + 4^(n+2)-8)/9; Table[Times @@ (f[Length[#]]&) /@ Select[s = Split[IntegerDigits[n, 2]], #[[1]] == 1 &], {n, 0, 63}] (* Jean-François Alcover, Jul 12 2017 *)
Formula
This is the Run Length Transform of A253068.
Comments