cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253067 The subsequence A253065(2^n-1).

Original entry on oeis.org

1, 5, 17, 65, 229, 813, 2945, 10513, 37701, 135261, 484609, 1737665, 6229413, 22330829, 80057281, 286996657, 1028861637, 3688409853, 13222664897, 47402353633, 169934149285, 609201913325, 2183946525185, 7829295473489, 28067476697413, 100619943566493
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2015

Keywords

Comments

A253065 is the Run Length Transform of this sequence.

Crossrefs

Cf. A253065.

Programs

  • Maple
    OddCA2:=proc(f,M) local n,a,i,f2,g,p;
       f2:=simplify(expand(f)) mod 2;
       p:=1; g:=f2;
       for n from 1 to M do p:=expand(p*g) mod 2; print(n,nops(p)); g:=expand(g^2) mod 2; od:
       return;
    end;
    f24:=1/x+1+x+x/y+x*y;
    OddCA2(f24,8);
  • Mathematica
    LinearRecurrence[{1, 5, 13, 6, 8}, {1, 5, 17, 65, 229}, 26] (* Jean-François Alcover, Nov 23 2017 *)
  • PARI
    Vec(-(2*x+1)*(4*x^3+3*x^2+2*x+1)/(8*x^5+6*x^4+13*x^3+5*x^2+x-1) + O(x^30)) \\ Colin Barker, Jul 16 2015

Formula

G.f.: (1+2*x)*(1+2*x+3*x^2+4*x^3)/(1-x-5*x^2-13*x^3-6*x^4-8*x^5).
Examination of the roots of the denominator shows that the ratio of successive terms approaches 3.5849301...