cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A272421 Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 470", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 6, 14, 38, 59, 115, 147, 236, 301, 441, 537, 738, 887, 1147, 1347, 1644, 1937, 2313, 2681, 3134, 3595, 4159, 4691, 5376, 6041, 6845, 7609, 8538, 9451, 10503, 11563, 12708, 13885, 15181, 16586, 17991, 19395, 21067, 22588, 24433, 26129, 28181, 30090, 32307
Offset: 0

Views

Author

Robert Price, Apr 29 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A253078.

Programs

  • Mathematica
    CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
    code=470; stages=128;
    rule=IntegerDigits[code,2,10];
    g=2*stages+1; (* Maximum size of grid *)
    a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
    ca=a;
    ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
    PrependTo[ca,a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k=(Length[ca[[1]]]+1)/2;
    ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
    on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
    Table[Total[Part[on,Range[1,i]]],{i,1,Length[on]}] (* Sum at each stage *)

A272422 First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 470", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

4, 3, 16, -3, 35, -24, 57, -24, 75, -44, 105, -52, 111, -60, 97, -4, 83, -8, 85, 8, 103, -32, 153, -20, 139, -40, 165, -16, 139, 8, 85, 32, 119, 109, 0, -1, 268, -151, 324, -149, 356, -143, 308, -65, 264, -55, 168, 115, 132, 37, 240, -145, 408, -223, 368, 51
Offset: 0

Views

Author

Robert Price, Apr 29 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A253078.

Programs

  • Mathematica
    CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
    code=470; stages=128;
    rule=IntegerDigits[code,2,10];
    g=2*stages+1; (* Maximum size of grid *)
    a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
    ca=a;
    ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
    PrependTo[ca,a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k=(Length[ca[[1]]]+1)/2;
    ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
    on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
    Table[on[[i+1]]-on[[i]],{i,1,Length[on]-1}] (* Difference at each stage *)

A272420 Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 470", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 5, 24, 89, 297, 1145, 4461, 17661, 70037, 278116, 1105688, 4386052, 17391896, 68794424, 272505548, 1086983752
Offset: 0

Views

Author

Robert Price, Apr 29 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A253078.

Programs

  • Mathematica
    CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
    code=470; stages=128;
    rule=IntegerDigits[code,2,10];
    g=2*stages+1; (* Maximum size of grid *)
    a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
    ca=a;
    ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
    PrependTo[ca,a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k=(Length[ca[[1]]]+1)/2;
    ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
    on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
    Part[on,2^Range[0,Log[2,stages]]] (* Extract relevant terms *)

Extensions

a(8)-a(15) from Lars Blomberg, Jul 05 2016
Showing 1-3 of 3 results.