cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253095 Moments of 4-step random walk in 4 dimensions.

Original entry on oeis.org

1, 4, 22, 148, 1144, 9784, 90346, 885868, 9115276, 97578688, 1079676448, 12285725632, 143204046496, 1704422018992, 20660609113186, 254522834851516, 3180935346538684, 40269426101933392, 515743456513546072, 6675036087017279056, 87221496402779437696, 1149701868292524559744
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2015

Keywords

Programs

  • Maple
    W := proc(n,nu,twok)
        option remember;
        local k;
        k := twok/2 ;
        if n = 2 and nu = 1 then
            binomial(2*k+2,k+1)/(k+2) ;
        else
            add( procname(n-1,nu,2*j)*binomial(k,j)*(k+nu)!*nu!/(k-j+nu)!/(j+nu)!,j=0..k) ;
            simplify(%,GAMMA) ;
        end if;
    end proc:
    A253095 := proc(n)
        W(4,1,n) ;
    end proc:
    seq(A253095(2*n),n=0..25) ; # R. J. Mathar, Jun 14 2015
  • Mathematica
    W[n_, nu_, twok_] := W[n, nu, twok] = Module[{k}, k = twok/2; If[n == 2 && nu == 1, Binomial[2k+2, k+1]/(k+2), Sum[W[n-1, nu, 2j]*Binomial[k, j]*(k+nu)!*nu!/(k-j+nu)!/(j+nu)!, {j, 0, k}]]];
    A253095[n_] := W[4, 1, n];
    Table[A253095[2n], {n, 0, 25}] (* Jean-François Alcover, Apr 16 2023, after R. J. Mathar *)