This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253096 #21 Apr 05 2024 11:10:14 %S A253096 1,5,35,305,3105,35505,444225,5970725,85068365,1272022745,19810304695, %T A253096 319422093325,5307057746125,90508769121165,1579462112057595, %U A253096 28130401719357645,510199561574590125,9405815167297415025,175977472926360962295,3336795660732459377085,64047222901288457886285 %N A253096 Moments of 5-step random walk in 4 dimensions. %H A253096 J. M. Borwein, <a href="https://carmamaths.org/resources/jon/beauty.pdf">A short walk can be beautiful</a>, 2015. %H A253096 Jonathan M. Borwein, Armin Straub and Christophe Vignat, <a href="http://carmamaths.org/resources/jon/dwalks.pdf">Densities of short uniform random walks, Part II: Higher dimensions</a>, Preprint, 2015. %p A253096 W := proc(n,nu,twok) %p A253096 option remember; %p A253096 local k; %p A253096 k := twok/2 ; %p A253096 if n = 2 and nu = 1 then %p A253096 binomial(2*k+2,k+1)/(k+2) ; %p A253096 else %p A253096 add( procname(n-1,nu,2*j)*binomial(k,j)*(k+nu)!*nu!/(k-j+nu)!/(j+nu)!,j=0..k) ; %p A253096 simplify(%,GAMMA) ; %p A253096 end if; %p A253096 end proc: %p A253096 A253096 := proc(n) %p A253096 W(5,1,n) ; %p A253096 end proc: %p A253096 seq(A253096(2*n),n=0..25) ; # _R. J. Mathar_, Jun 14 2015 %Y A253096 Cf. A253095 (4-step), A253097 (6-step). %K A253096 nonn %O A253096 0,2 %A A253096 _N. J. A. Sloane_, Feb 16 2015 %E A253096 a(20) corrected by _Georg Fischer_, May 30 2022