This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253100 #23 Jul 12 2017 05:24:27 %S A253100 1,6,6,24,6,36,24,96,6,36,36,144,24,144,96,372,6,36,36,144,36,216,144, %T A253100 576,24,144,144,576,96,576,372,1416,6,36,36,144,36,216,144,576,36,216, %U A253100 216,864,144,864,576,2232,24,144,144,576,144,864,576,2304,96,576,576,2304,372,2232,1416,5340 %N A253100 Number of odd terms in f^n, where f = 1/(x*y)+1/x+1/x*y+1/y+x+x*y. %C A253100 This is the number of ON cells in a certain two-dimensional cellular automaton in which the neighborhood of a cell is defined by f, and in which a cell is ON iff there were an odd number of ON cells in the neighborhood at the previous generation. %C A253100 This is the odd-rule cellular automaton defined by OddRule 347 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). %H A253100 Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1503.01796">A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata</a>, arXiv:1503.01796, 2015; see also the <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/CAcount.html">Accompanying Maple Package</a>. %H A253100 Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1503.04249">Odd-Rule Cellular Automata on the Square Grid</a>, arXiv:1503.04249, 2015. %H A253100 N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: <a href="https://vimeo.com/119073818">Part 1</a>, <a href="https://vimeo.com/119073819">Part 2</a> %H A253100 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168, 2015 %H A253100 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %F A253100 This is the Run Length Transform of A253101. %e A253100 Here is the neighborhood f: %e A253100 [X, 0, X] %e A253100 [X, 0, X] %e A253100 [X, X, 0] %e A253100 which contains a(1) = 6 ON cells. %p A253100 C:=f->subs({x=1, y=1}, f); %p A253100 # Find number of ON cells in CA for generations 0 thru M defined by rule %p A253100 # that cell is ON iff number of ON cells in nbd at time n-1 was odd %p A253100 # where nbd is defined by a polynomial or Laurent series f(x, y). %p A253100 OddCA:=proc(f, M) global C; local n, a, i, f2, p; %p A253100 f2:=simplify(expand(f)) mod 2; %p A253100 a:=[]; p:=1; %p A253100 for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od: %p A253100 lprint([seq(a[i], i=1..nops(a))]); %p A253100 end; %p A253100 f:=1/(x*y)+1/x+1/x*y+1/y+x+x*y; %p A253100 OddCA(f, 130); %t A253100 (* f = A253101 *) f[n_] := 2*(2-Sqrt[3])^n + 2*(2+Sqrt[3])^n - 2^n // Round; Table[Times @@ (f[Length[#]]&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 63}] (* _Jean-François Alcover_, Jul 12 2017 *) %Y A253100 Cf. A253101. Similar to but different from A247640. %K A253100 nonn %O A253100 0,2 %A A253100 _N. J. A. Sloane_ and _Doron Zeilberger_, Feb 19 2015