cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253107 Number of Eulerian cycles in a lattice graph bounded by the eight equations x+y=-2n, x+y=2n, x-y=-2n, x-y=2n, x=1-2n, x=2n-1, y=1-2n, and y=2n-1 (Aztec Diamond graph).

This page as a plain text file.
%I A253107 #10 Feb 16 2025 08:33:24
%S A253107 1,40,132160,33565612800,641149227424067584,
%T A253107 911979417737022109612195840,96089134887576552087085389330051891200,
%U A253107 747578503218020593242369202628724536730457230016512
%N A253107 Number of Eulerian cycles in a lattice graph bounded by the eight equations x+y=-2n, x+y=2n, x-y=-2n, x-y=2n, x=1-2n, x=2n-1, y=1-2n, and y=2n-1 (Aztec Diamond graph).
%H A253107 P. Audibert, <a href="http://as.wiley.com/WileyCDA/WileyTitle/productCd-1848211961.html">Mathematics for Informatics and Computer Science</a>, Wiley, 2010, p. 832.
%H A253107 Muhammad Kholilurrohman and Shin-ichi Minato, <a href="http://www-alg.ist.hokudai.ac.jp/~thomas/TCSTR/tcstr_14_77/tcstr_14_77.pdf">An Efficient Algorithm for Enumerating Eulerian Paths</a>, Hokkaido University, Division of Computer Science, TCS Technical Reports, TCS-TR-A-14-77, Oct. 2014.
%H A253107 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EulerianCycle.html">Eulerian Cycle</a>
%K A253107 nonn
%O A253107 1,2
%A A253107 _Muhammad Kholilurrohman_, Dec 26 2014