cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253140 Smallest of three consecutive primes in arithmetic progression with common difference 24 and digit sum prime.

This page as a plain text file.
%I A253140 #12 Sep 16 2016 13:52:52
%S A253140 89,373,773,863,1279,2063,2089,2399,2663,2753,3299,4153,4373,5879,
%T A253140 6173,6263,6779,7079,7499,7853,9473,10453,11399,12253,12479,14699,
%U A253140 16763,19379,21163,21563,25073,29363,32189,33599,40063,41879,42773,50053,50363,52673,56453
%N A253140 Smallest of three consecutive primes in arithmetic progression with common difference 24 and digit sum prime.
%H A253140 K. D. Bajpai, <a href="/A253140/b253140.txt">Table of n, a(n) for n = 1..10000</a>
%e A253140 a(1) = 89: 89 + 24 = 113; 113 + 24 = 137; all three are prime. Their digit sums 8+9 = 17, 1+1+3 = 5 and 1+3+7 = 11 are also prime.
%e A253140 a(2) = 373: 373 + 24 = 397; 397 + 24 = 421; all three are prime. Their digit sums 3+7+3 = 13, 3+9+7 = 19 and 4+2+1 = 7 are also prime.
%t A253140 A253140 = {}; Do[d = 24; k = Prime[n]; k1 = k+d; k2 = k+2d; If[PrimeQ[k1] && PrimeQ[k2] && PrimeQ[Plus@@IntegerDigits[k]] && PrimeQ[Plus@@IntegerDigits[k1]] && PrimeQ[Plus@@IntegerDigits[k2]], AppendTo[A253140,k]], {n,20000}]; A253140
%t A253140 tcpQ[n_]:=Module[{a=n+24,b=n+48},AllTrue[{a,b},PrimeQ]&&AllTrue[Total/@ (IntegerDigits/@{n,a,b}),PrimeQ]]; Select[Prime[Range[6000]],tcpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Sep 16 2016 *)
%Y A253140 Cf. A000040, A033447, A062088.
%K A253140 nonn,base
%O A253140 1,1
%A A253140 _K. D. Bajpai_, Dec 27 2014