A253147 Palindromes in base 10 >= 256 that remain palindromes when the digits are reversed in base 256.
8448, 31613, 32123, 55255, 63736, 92929, 96769, 108801, 450054, 516615, 995599, 1413141, 1432341, 1539351, 1558551, 2019102, 2491942, 2513152, 2712172, 2731372, 2750572, 2807082, 2838382, 2857582, 2876782, 3097903, 3740473, 3866683, 3885883, 4201024, 4220224, 4327234
Offset: 1
Examples
2857582 is in the sequence since 2857582 is 2b 9a 6e in base 16 and 6e 9a 2b = 7248427 is a palindrome.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..176
- Wikipedia, Endianness
Programs
-
Python
def palgen(l, b=10): # generator of palindromes in base b of length <= 2*l if l > 0: yield 0 for x in range(1, l+1): n = b**(x-1) n2 = n*b for y in range(n, n2): k, m = y//b, 0 while k >= b: k, r = divmod(k, b) m = b*m + r yield y*n + b*m + k for y in range(n, n2): k, m = y, 0 while k >= b: k, r = divmod(k, b) m = b*m + r yield y*n2 + b*m + k def reversedigits(n, b=10): # reverse digits of n in base b x, y = n, 0 while x >= b: x, r = divmod(x, b) y = b*y + r return b*y + x A253147_list = [] for n in palgen(4): x = reversedigits(n, 256) if n > 255 and x == reversedigits(x, 10): A253147_list.append(n)
Comments