This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253148 #21 May 22 2025 10:21:42 %S A253148 55255,63736,92929,96769,108801,450054,516615,995599,1413141,1432341, %T A253148 1539351,1558551,2019102,2491942,2807082,3097903,3740473,3866683, %U A253148 3885883,4201024,4220224,4327234,4346434,4365634,4384834,5614165,5633365,5759575,6692966,7153517,7172717 %N A253148 Nontrivial palindromes in base 10 and base 256. %C A253148 Palindromes in base 256 are numbers that are the same in big-endian and little-endian order with 8-bit words. See also A238853. %C A253148 A palindromic number in base 10 which is below 256 is a 1-digit number in base 256. Thus, it is automatically a palindrome in base 256. This sequence excludes 1-digit numbers in base 256. - _Tanya Khovanova_, Aug 21 2021 %H A253148 Chai Wah Wu, <a href="/A253148/b253148.txt">Table of n, a(n) for n = 1..121</a> %H A253148 Wikipedia, <a href="http://en.wikipedia.org/wiki/Endianness">Endianness</a> %e A253148 7172717 in base 16 is 6d 72 6d and the bytes form a palindrome. %t A253148 Select[Range[256, 10000000], PalindromeQ[#] && PalindromeQ[IntegerDigits[#, 256]] &] (* _Tanya Khovanova_, Aug 21 2021 *) %o A253148 (Python) %o A253148 from __future__ import division %o A253148 def palgen(l, b=10): # generator of palindromes in base b of length <= 2*l %o A253148 if l > 0: %o A253148 yield 0 %o A253148 for x in range(1, l+1): %o A253148 n = b**(x-1) %o A253148 n2 = n*b %o A253148 for y in range(n, n2): %o A253148 k, m = y//b, 0 %o A253148 while k >= b: %o A253148 k, r = divmod(k, b) %o A253148 m = b*m + r %o A253148 yield y*n + b*m + k %o A253148 for y in range(n, n2): %o A253148 k, m = y, 0 %o A253148 while k >= b: %o A253148 k, r = divmod(k, b) %o A253148 m = b*m + r %o A253148 yield y*n2 + b*m + k %o A253148 def reversedigits(n, b=10): # reverse digits of n in base b %o A253148 x, y = n, 0 %o A253148 while x >= b: %o A253148 x, r = divmod(x, b) %o A253148 y = b*y + r %o A253148 return b*y + x %o A253148 A253148_list = [] %o A253148 for n in palgen(5): %o A253148 if n > 255 and n == reversedigits(n,256): %o A253148 A253148_list.append(n) %Y A253148 Cf. A253147, A253149, A238853. %K A253148 nonn,base %O A253148 1,1 %A A253148 _Chai Wah Wu_, Dec 30 2014 %E A253148 Name clarified by _Tanya Khovanova_, Aug 21 2021