A253149 Primes >= 256 that remain primes when the digits are reversed in base 256.
257, 269, 293, 311, 313, 347, 379, 397, 419, 449, 479, 491, 773, 809, 823, 827, 829, 857, 883, 887, 947, 953, 971, 977, 1013, 1283, 1289, 1297, 1301, 1307, 1321, 1327, 1367, 1373, 1399, 1409, 1429, 1439, 1451, 1453, 1481, 1483, 1511, 1523, 1801, 1811, 1847, 1867
Offset: 1
Examples
1299647 is prime and written in base 16 is 13 d4 bf whereas bf d4 13 = 12571667 is also prime.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..7110
- Wikipedia, Endianness
Programs
-
Python
from sympy import prime, isprime def reversedigits(n, b=10): # reverse digits of n in base b x, y = n, 0 while x >= b: x, r = divmod(x, b) y = b*y + r return b*y + x A253149_list = [] for n in range(1, 300): p = prime(n) if p > 255 and isprime(reversedigits(p,256)): A253149_list.append(p) print(A253149_list)
Comments