This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253172 #21 Dec 30 2014 09:47:04 %S A253172 15628,15678,16038,17082,17820,19084,20457,20748,20754,21658,24507, %T A253172 24587,25704,26910,26970,27096,27504,27690,28156,28651,29076,29370, %U A253172 29670,29706,29730,30956,30972,30976,32890,32970,34056,34902,34986,35046,35074,35096,35496,35690,36092,36490,36508,36950,36970,36972,37092,37096,37290,37590,37690,37908,38870,39026,39720,39760,40587,40596 %N A253172 Numbers n = p * q, where n, p, and q together contain all 10 digits at least once. %C A253172 All pandigital numbers (cf. A171102) belong to this sequence; therefore A050288(1) = 10123457689 is the smallest prime term. - _Reinhard Zumkeller_, Dec 29 2014 %H A253172 Reinhard Zumkeller, <a href="/A253172/b253172.txt">Table of n, a(n) for n = 1..1000</a> %e A253172 a(1) is 15628 = 4 * 3907, using all 10 digits. %e A253172 a(8) is 20748 = 13 * 1596 (note duplicate 1, which is ok in this sequence). %e A253172 a(3) is 16038 = 27 * 594, and also 16038 = 54 * 297; two different solutions for a(3). %o A253172 (PARI) isokpq(n) = {fordiv(n, d, digs = digits(n); if ( d <= sqrtint(n), digs = concat(digs, digits(d)); digs = concat(digs, digits(n/d)); if (#Set(digs) == 10, return(1));););} %o A253172 lista(nn) = {for(n=2, nn, if (isokpq(n), print1(n, ", ")););} \\ _Michel Marcus_, Dec 29 2014 %o A253172 (Haskell) %o A253172 import Data.List (nub, sort) %o A253172 a253172 n = a253172_list !! (n-1) %o A253172 a253172_list = filter f [2..] where %o A253172 f x = g divs $ reverse divs where %o A253172 g (d:ds) (q:qs) = d <= q && %o A253172 (sort (nub $ xs ++ show d ++ show q) == decs || g ds qs) %o A253172 xs = show x %o A253172 divs = a027750_row x %o A253172 decs = "0123456789" %o A253172 -- _Reinhard Zumkeller_, Dec 29 2014 %Y A253172 Cf. A195814, which restricts sequence terms along with their factors to exactly 10 digits, and thus has a finite number of terms. %Y A253172 Cf. A027750, subsequences: A050278, A171102, A050288. %K A253172 nonn,easy,base %O A253172 1,1 %A A253172 _Randy L. Ekl_, Dec 28 2014