cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253175 Indices of hexagonal numbers (A000384) which are also centered hexagonal numbers (A003215).

This page as a plain text file.
%I A253175 #27 May 30 2025 10:10:26
%S A253175 1,7,67,661,6541,64747,640927,6344521,62804281,621698287,6154178587,
%T A253175 60920087581,603046697221,5969546884627,59092422149047,
%U A253175 584954674605841,5790454323909361,57319588564487767,567405431320968307,5616734724645195301,55599941815130984701
%N A253175 Indices of hexagonal numbers (A000384) which are also centered hexagonal numbers (A003215).
%C A253175 Also positive integers x in the solutions to 4*x^2-6*y^2-2*x+6*y-2 = 0, the corresponding values of y being A253475.
%H A253175 Colin Barker, <a href="/A253175/b253175.txt">Table of n, a(n) for n = 1..1000</a>
%H A253175 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-11,1).
%F A253175 a(n) = 11*a(n-1)-11*a(n-2)+a(n-3).
%F A253175 G.f.: -x*(x^2-4*x+1) / ((x-1)*(x^2-10*x+1)).
%F A253175 a(n) = (2+(5-2*sqrt(6))^n*(3+sqrt(6))-(-3+sqrt(6))*(5+2*sqrt(6))^n)/8. - _Colin Barker_, Mar 05 2016
%F A253175 4*a(n) = 1+3*A072256(n). - _R. J. Mathar_, Feb 07 2022
%F A253175 a(n) = A350923(n)/2. - _Paolo Xausa_, May 30 2025
%e A253175 7 is in the sequence because the 7th hexagonal number is 91, which is also the 6th centered hexagonal number.
%t A253175 LinearRecurrence[{11, -11, 1}, {1, 7, 67}, 25] (* _Paolo Xausa_, May 30 2025 *)
%o A253175 (PARI) Vec(-x*(x^2-4*x+1)/((x-1)*(x^2-10*x+1)) + O(x^100))
%Y A253175 Cf. A000384, A003215, A253475, A006244, A350923.
%K A253175 nonn,easy
%O A253175 1,2
%A A253175 _Colin Barker_, Jan 08 2015