A253215 a(n) is the greatest positive integer m such that phi(m) <= n where phi is Euler's totient function.
2, 6, 6, 12, 12, 18, 18, 30, 30, 30, 30, 42, 42, 42, 42, 60, 60, 60, 60, 66, 66, 66, 66, 90, 90, 90, 90, 90, 90, 90, 90, 120, 120, 120, 120, 126, 126, 126, 126, 150, 150, 150, 150, 150, 150, 150, 150, 210, 210, 210, 210, 210, 210, 210, 210
Offset: 1
Keywords
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..1000
- MathOverflow, The maximum of the preimage of [1,x] through Euler's totient function
- Eric Weisstein's World of Mathematics, Totient Function
- Wikipedia, Euler's totient function
Programs
-
Mathematica
inversePhi[m_?EvenQ] := Module[{p, nmax, n, nn}, p = Select[Divisors[m]+1, PrimeQ]; nmax = m*Times @@ (p/(p-1)); n = m; nn = {}; While[n <= nmax, If[EulerPhi[n] == m, AppendTo[nn, n]]; n++]; nn]; a[1] = 2; a[n_?OddQ] := a[n-1]; a[n_] := a[n] = Module[{m}, m = inversePhi[n] // Max; If[m > a[n-1], m, a[n-1]]]; Table[a[n], {n, 1, 100}]
Comments