A253220 Number of n X 5 nonnegative integer arrays with upper left 0 and lower right its king-move distance away minus 2 and every value within 2 of its king move distance from the upper left and every value increasing by 0 or 1 with every step right, diagonally se or down.
6, 25, 102, 268, 268, 3568, 16028, 40238, 77063, 126673, 189083, 264293, 352303, 453113, 566723, 693133, 832343, 984353, 1149163, 1326773, 1517183, 1720393, 1936403, 2165213, 2406823, 2661233, 2928443, 3208453, 3501263, 3806873, 4125283
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..1..1..2....0..1..1..2..2....0..0..0..1..2....0..0..0..1..2 ..1..1..1..1..2....0..1..1..2..2....0..0..0..1..2....1..1..1..1..2 ..1..1..2..2..2....1..1..2..2..2....0..1..1..1..2....1..1..2..2..2 ..1..2..2..2..2....2..2..2..2..2....1..1..2..2..2....2..2..2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 5 of A253223.
Formula
Empirical: a(n) = 6400*n^2 - 71990*n + 206573 for n>8.
Conjectures from Colin Barker, Dec 10 2018: (Start)
G.f.: x*(6 + 7*x + 45*x^2 + 31*x^3 - 255*x^4 + 3466*x^5 + 5860*x^6 + 2590*x^7 + 865*x^8 + 170*x^9 + 15*x^10) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>11.
(End)