cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253232 Smallest of five consecutive primes in arithmetic progression with common difference 90 and equal digit sums.

This page as a plain text file.
%I A253232 #13 May 13 2022 14:51:49
%S A253232 61,83,89,593,1399,2063,2287,2351,2441,3491,5081,5171,5479,6599,9497,
%T A253232 12073,16561,17569,21377,23099,23189,28573,29063,32143,36293,36497,
%U A253232 36587,39569,49279,61291,62383,65449,66373,71167,72379,75347,81457,88591,92377,94261,104369
%N A253232 Smallest of five consecutive primes in arithmetic progression with common difference 90 and equal digit sums.
%C A253232 90 is the smallest common difference (d) to get a set of five consecutive primes in arithmetic progression {p, p+d, p+2d, p+3d, p+4d} having digit sums equal; for p < prime(10^5).
%H A253232 K. D. Bajpai, <a href="/A253232/b253232.txt">Table of n, a(n) for n = 1..10000</a>
%e A253232 a(1) = 61: 61+90 = 151; 151+90 = 241; 241+90 = 331; 331+90 = 421; all five are prime. Their digit sums 6+1 = 1+5+1 = 2+4+1 = 3+3+1 = 4+2+1 = 7 are all equal.
%e A253232 a(2) = 83: 83+90 = 173; 173+90 = 263; 263+90 = 353; 353+90 = 443; all five are prime. Their digit sums 8+3 = 1+7+3 = 2+6+3 = 3+5+3 = 4+4+3 = 11 are all equal.
%t A253232 A253232 = {}; Do[d = 90; k = Prime[n]; k1 = k + d; k2 = k + 2 d; k3 = k + 3 d; k4 = k + 4 d; s = Plus @@ IntegerDigits[k]; s1 = Plus @@ IntegerDigits[k1]; s2 = Plus @@ IntegerDigits[k2]; s3 = Plus @@ IntegerDigits[k3]; s4 = Plus @@ IntegerDigits[k4]; If[PrimeQ[k1] && PrimeQ[k2] && PrimeQ[k3] && PrimeQ[k4] && s == s1 && s1 == s2 && s2 == s3 && s3 == s4, AppendTo[A253232, k]], {n, 50000}]; A253232
%t A253232 cd90Q[p_]:=Module[{q=p+90,r=p+180,s=p+270,t=p+360},AllTrue[{p,q,r,s,t},PrimeQ] && Length[Union[Total/@(IntegerDigits/@{p,q,r,s,t})]]==1]; Select[ Prime[ Range[ 10000]],cd90Q] (* _Harvey P. Dale_, May 13 2022 *)
%Y A253232 Cf. A000040, A033447, A062088, A253140.
%K A253232 nonn,base
%O A253232 1,1
%A A253232 _K. D. Bajpai_, Dec 29 2014