A342255
Square array read by ascending antidiagonals: T(n,k) = gcd(k, Phi_k(n)), where Phi_k is the k-th cyclotomic polynomial, n >= 1, k >= 1.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 5, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 3, 7, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 2, 5, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 2, 3, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 13
Offset: 1
Table begins
n\k | 1 2 3 4 5 6 7 8 9 10 11 12
------------------------------------------
1 | 1 2 3 2 5 1 7 2 3 1 11 1
2 | 1 1 1 1 1 3 1 1 1 1 1 1
3 | 1 2 1 2 1 1 1 2 1 1 1 1
4 | 1 1 3 1 1 1 1 1 3 5 1 1
5 | 1 2 1 2 1 3 1 2 1 1 1 1
6 | 1 1 1 1 5 1 1 1 1 1 1 1
7 | 1 2 3 2 1 1 1 2 3 1 1 1
8 | 1 1 1 1 1 3 7 1 1 1 1 1
9 | 1 2 1 2 1 1 1 2 1 5 1 1
10 | 1 1 3 1 1 1 1 1 3 1 1 1
11 | 1 2 1 2 5 3 1 2 1 1 1 1
12 | 1 1 1 1 1 1 1 1 1 1 11 1
Cf.
A253240,
A323748,
A014963 (row 1),
A253235 (indices of columns with only 1),
A342256 (indices of columns with some elements > 1),
A342257 (period of each column, also maximum value of each column),
A013595 (coefficients of cyclotomic polynomials).
A342323 is the same table with offset 0.
-
A342255[n_, k_] := GCD[k, Cyclotomic[k, n]];
Table[A342255[n-k+1,k], {n, 15}, {k, n}] (* Paolo Xausa, Feb 09 2024 *)
-
T(n,k) = gcd(k, polcyclo(k,n))
A323748
Square array read by ascending antidiagonals: the n-th row lists the Zsigmondy numbers for a = n, b = 1, that is, T(n,k) = Zs(k, n, 1) is the greatest divisor of n^k - 1 that is coprime to n^m - 1 for all positive integers m < k, with n >= 2, k >= 1.
Original entry on oeis.org
1, 2, 3, 3, 1, 7, 4, 5, 13, 5, 5, 3, 7, 5, 31, 6, 7, 31, 17, 121, 1, 7, 1, 43, 13, 341, 7, 127, 8, 9, 19, 37, 781, 13, 1093, 17, 9, 5, 73, 25, 311, 7, 5461, 41, 73, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 3, 37, 41, 4681, 43, 55987, 313, 1387, 61, 2047, 12, 13, 133, 101, 7381, 19, 137257, 1297, 15751, 41, 88573, 13
Offset: 2
In the following list, "*" identifies a prime power.
Table begins
n\k | 1 2 3 4 5 6 7 8
2 | 1 , 3*, 7*, 5*, 31*, 1 , 127*, 17*
3 | 2*, 1 , 13*, 5*, 121*, 7*, 1093*, 41*
4 | 3*, 5*, 7*, 17*, 341 , 13*, 5461 , 257*
5 | 4*, 3*, 31*, 13*, 781 , 7*, 19531*, 313*
6 | 5*, 7*, 43*, 37*, 311*, 31*, 55987*, 1297*
7 | 6 , 1 , 19*, 25*, 2801*, 43*, 137257 , 1201*
8 | 7*, 9*, 73*, 65 , 4681 , 19*, 42799 , 4097
9 | 8*, 5*, 91 , 41*, 7381 , 73*, 597871 , 3281
10 | 9*, 11*, 37*, 101*, 11111 , 91 , 1111111 , 10001
11 | 10 , 3*, 133 , 61*, 3221*, 37*, 1948717 , 7321*
12 | 11*, 13*, 157*, 145 , 22621*, 133 , 3257437 , 20737
The first few columns:
T(n,1) = n - 1;
T(n,2) = A000265(n+1);
T(n,3) = (n^2 + n + 1)/3 if n == 1 (mod 3), n^2 + n + 1 otherwise;
T(n,4) = (n^2 + 1)/2 if n == 1 (mod 2), n^2 + 1 otherwise;
T(n,5) = (n^4 + n^3 + n^2 + n + 1)/5 if n == 1 (mod 5), n^4 + n^3 + n^2 + n + 1 otherwise;
T(n,6) = (n^2 - n + 1)/3 if n == 2 (mod 3), n^2 - n + 1 otherwise;
T(n,7) = (n^6 + n^5 + ... + 1)/7 if n == 1 (mod 7), n^6 + n^5 + ... + 1 otherwise;
T(n,8) = (n^4 + 1)/2 if n == 1 (mod 2), n^4 + 1 otherwise;
T(n,9) = (n^6 + n^3 + 1)/3 if n == 1 (mod 3), n^6 + n^3 + 1 otherwise;
T(n,10) = (n^4 - n^3 + n^2 - n + 1)/5 if n == 4 (mod 5), n^4 - n^3 + n^2 - n + 1 otherwise;
T(n,11) = (n^10 + n^9 + ... + 1)/11 if n == 1 (mod 11), n^10 + n^9 + ... + 1 otherwise;
T(n,12) = n^4 - n^2 + 1 (12 is not of the form p^e*d for any prime p, exponent e >= 1 and d dividing p-1).
-
Table[Function[n, SelectFirst[Reverse@ Divisors[n^k - 1], Function[m, AllTrue[n^Range[k - 1] - 1, GCD[#, m] == 1 &]]]][j - k + 2], {j, 12}, {k, j}] // Flatten (* or *)
Table[Function[n, If[k == 2, #/2^IntegerExponent[#, 2] &[n + 1], #/GCD[#, k] &@ Cyclotomic[k, n]]][j - k + 1], {j, 2, 13}, {k, j - 1}] // Flatten (* Michael De Vlieger, Feb 02 2019 *)
-
T(n,k) = if(k==2, (n+1)>>valuation(n+1, 2), my(m = polcyclo(k, n)); m/gcd(m, k))
Showing 1-2 of 2 results.
Comments