cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253246 Pisano period of A006190 to mod prime(n).

Original entry on oeis.org

3, 2, 12, 16, 8, 52, 16, 40, 22, 28, 64, 76, 28, 42, 96, 26, 24, 30, 136, 144, 148, 26, 168, 180, 196, 50, 102, 106, 20, 112, 126, 10, 92, 138, 300, 304, 156, 328, 336, 86, 178, 180, 190, 388, 396, 198, 30, 448, 456, 460, 116, 160, 484, 250, 128, 262, 268, 544, 138, 564
Offset: 1

Views

Author

Eric Chen, Apr 11 2015

Keywords

Comments

If the generalized Wall's conjecture to A006190 is true, then we can calculate A175182(m) when m is a prime power since for any k>=1 : A175182(prime(n)^k)=a(n)*prime(n)^(k-1). For example: A175182(2^k)=3*2^(k-1)=A007283(k-1).
In fact, the conjecture fails on p=241, and this is the only counterexample below 10^8.

Crossrefs

Programs

  • Mathematica
    Table[s = t = Mod[{0, 1}, Prime[n]]; cnt = 1; While[tmp = Mod[3*t[[2]] + t[[1]], n]; t[[1]] = t[[2]]; t[[2]] = tmp; s!= t, cnt++]; cnt, {n, 100}]
  • PARI
    fibmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
    entry(p)=my(k=1, c=Mod(1, p), o); while(c, [o, c]=[c, 3*c+o]; k++); ka(n)=entry(prime(n))

Formula

a(n) = A175182(A000040(n)).