cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253247 Pisano period of A006190(n^2) divided by Pisano period of A006190(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 4, 13, 7, 5, 16, 17, 9, 19, 10, 21, 11, 23, 8, 25, 13, 27, 7, 29, 5, 31, 32, 33, 17, 35, 36, 37, 19, 39, 40, 41, 7, 43, 11, 45, 23, 47, 16, 49, 25, 51, 26, 53, 27, 55, 14, 57, 29, 59, 10, 61, 31, 63, 64, 65, 11, 67, 17, 69, 35, 71, 72
Offset: 1

Views

Author

Eric Chen, Apr 09 2015

Keywords

Comments

For all n, a(n)|n.
Conjecture: a(n) = 1 only for n = 1 and 6. (This conjecture is true if and only if the generalized Wall's conjecture to A006190 is true.)
If there exists any prime p such that A175182(p^2) = A175182(p), then the conjecture fails.
For any prime p, these three statements are equivalent:
(1) A175182(p^2) = A175182(p).
(2) A006190(p-(p|13)) = 3 (mod p^2).
(3) A006497(p) = 1 (mod p^2).
Since A175182(241^2) = A175182(241) = 484, so the prime 241 is a Wall-Sun-Sun prime to A006190 (Lucas (P, Q) = (3, -1)) and no others < 10^8, so the conjecture is true for all primes < 10^8 except 241.
All of Wall's theorems are true for A175182. For example, let P(n) = A175182(n), p and q are primes, then P(pq) = lcm(P(p), P(q)), and for every prime p, P(p)|(p-1) if (p|13) = 1, P(p)|(2p+2) if (p|13) = -1 (P(13) = 52, which if divisible by 13), while (p|13) is the Legendre symbol, and the fixed points of A175182 are 1, 6, and 12*13^k, k>0.

Crossrefs

Programs

  • Maple
    F := proc(k, n) option remember; if n <= 1 then n; else k*procname(k, n-1)+procname(k, n-2) ; end if; end proc:
    Pper := proc(k, m) local cha, zer, n, fmodm ; cha := [] ; zer := [] ; for n from 0 do fmodm := F(k, n) mod m ; cha := [op(cha), fmodm] ; if fmodm = 0 then zer := [op(zer), n] ; end if; if nops(zer) = 5 then break; end if; end do ; if [op(1..zer[2], cha) ] = [ op(zer[2]+1..zer[3], cha) ] and [op(1..zer[2], cha)] = [ op(zer[3]+1..zer[4], cha) ] and [op(1..zer[2], cha)] = [ op(zer[4]+1..zer[5], cha) ] then return zer[2] ; elif [op(1..zer[3], cha) ] = [ op(zer[3]+1..zer[5], cha) ] then return zer[3] ; else return zer[5] ; end if; end proc:
    k := 3 ; seq( Pper(k, m^2) div Pper(k, m), m=1..300) ;
  • Mathematica
    A006190[n_] := Fibonacci[n, 3];
    A175182[n_] := Module[{k=1}, While[Mod[A006190[k], n] != 0 || Mod[A006190[k+1]-1, n] != 0, k++]; k];
    Table[A175182[n^2] / A175182[n], {n, 72}] (* corrected by Jason Yuen, Jun 28 2025 *)
  • PARI
    fibmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
    entry_p(p)=my(k=1, c=Mod(1, p), o); while(c, [o, c]=[c, 3*c+o]; k++); k
    entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e8 && f[i, 1] != 241, entry_p(f[i, 1]^f[i, 2]), entry_p(f[i, 1])*f[i, 1]^(f[i, 2] - 1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<
    				

Formula

a(n) = A175182(n^2) / A175182(n).