A253247 Pisano period of A006190(n^2) divided by Pisano period of A006190(n).
1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 4, 13, 7, 5, 16, 17, 9, 19, 10, 21, 11, 23, 8, 25, 13, 27, 7, 29, 5, 31, 32, 33, 17, 35, 36, 37, 19, 39, 40, 41, 7, 43, 11, 45, 23, 47, 16, 49, 25, 51, 26, 53, 27, 55, 14, 57, 29, 59, 10, 61, 31, 63, 64, 65, 11, 67, 17, 69, 35, 71, 72
Offset: 1
Keywords
Links
- Eric Chen, Table of n, a(n) for n = 1..1000
Programs
-
Maple
F := proc(k, n) option remember; if n <= 1 then n; else k*procname(k, n-1)+procname(k, n-2) ; end if; end proc: Pper := proc(k, m) local cha, zer, n, fmodm ; cha := [] ; zer := [] ; for n from 0 do fmodm := F(k, n) mod m ; cha := [op(cha), fmodm] ; if fmodm = 0 then zer := [op(zer), n] ; end if; if nops(zer) = 5 then break; end if; end do ; if [op(1..zer[2], cha) ] = [ op(zer[2]+1..zer[3], cha) ] and [op(1..zer[2], cha)] = [ op(zer[3]+1..zer[4], cha) ] and [op(1..zer[2], cha)] = [ op(zer[4]+1..zer[5], cha) ] then return zer[2] ; elif [op(1..zer[3], cha) ] = [ op(zer[3]+1..zer[5], cha) ] then return zer[3] ; else return zer[5] ; end if; end proc: k := 3 ; seq( Pper(k, m^2) div Pper(k, m), m=1..300) ;
-
Mathematica
A006190[n_] := Fibonacci[n, 3]; A175182[n_] := Module[{k=1}, While[Mod[A006190[k], n] != 0 || Mod[A006190[k+1]-1, n] != 0, k++]; k]; Table[A175182[n^2] / A175182[n], {n, 72}] (* corrected by Jason Yuen, Jun 28 2025 *)
-
PARI
fibmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2] entry_p(p)=my(k=1, c=Mod(1, p), o); while(c, [o, c]=[c, 3*c+o]; k++); k entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e8 && f[i, 1] != 241, entry_p(f[i, 1]^f[i, 2]), entry_p(f[i, 1])*f[i, 1]^(f[i, 2] - 1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<
Comments