cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253249 Number of nonempty chains in the divides relation on the divisors of n.

This page as a plain text file.
%I A253249 #40 Nov 24 2024 09:29:02
%S A253249 1,3,3,7,3,11,3,15,7,11,3,31,3,11,11,31,3,31,3,31,11,11,3,79,7,11,15,
%T A253249 31,3,51,3,63,11,11,11,103,3,11,11,79,3,51,3,31,31,11,3,191,7,31,11,
%U A253249 31,3,79,11,79,11,11,3,175,3,11,31,127,11,51,3,31,11,51
%N A253249 Number of nonempty chains in the divides relation on the divisors of n.
%C A253249 For prime p, a(p)=3.
%C A253249 a(2^k) = 2^(k+1)-1.
%C A253249 For integers of the form n = p_1*p_2*...*p_k we have a(n) = A007047(k).
%C A253249 The value of a(n) depends only on the exponents in the prime factorization of n.
%H A253249 Alois P. Heinz, <a href="/A253249/b253249.txt">Table of n, a(n) for n = 1..20000</a>
%F A253249 Dirichlet g.f.: zeta(s)^2*A(s) where A(s) is the Dirichlet g.f. for A074206. - _Geoffrey Critzer_, May 23 2018
%F A253249 Sum_{k=1..n} a(k) ~ -4*n^r / (r*Zeta'(r)), where r = A107311 = 1.728647238998183618135103... is the root of the equation zeta(r) = 2. - _Vaclav Kotesovec_, Jan 31 2019
%F A253249 a(n) = 4*A002033(n-1) - 1 for n > 1. - _Geoffrey Critzer_, Aug 19 2020
%e A253249 a(10) = 11 because we have: {1}, {2}, {5}, {10}, {1|2}, {1|5}, {1|10}, {2|10}, {5|10}, {1|2|10}, {1|5|10}.
%p A253249 with(numtheory):
%p A253249 b:= proc(n) option remember: 1+ `if`(n=1, 0,
%p A253249        add(b(d), d=divisors(n) minus {n}))
%p A253249     end:
%p A253249 a:= n-> add(b(d), d=divisors(n)):
%p A253249 seq(a(n), n=1..100);  # _Alois P. Heinz_, Jun 04 2015
%t A253249 Table[Total[Table[Length[Select[Subsets[Divisors[n], {k}],Apply[And, Map[Apply[Divisible, #] &,Partition[Reverse[#], 2, 1]]] &]], {k, 1,PrimeOmega[n] + 1}]], {n, 1, 100}]
%Y A253249 Cf. A002033, A007047, A074206, A107311, A378219 (Dirichlet inverse).
%K A253249 nonn
%O A253249 1,2
%A A253249 _Geoffrey Critzer_, Jun 04 2015