A253269 Weakly Twin Primes in base 10: Can only reach one other prime by single-decimal-digit changes.
89391959, 89591959, 519512471, 519512473, 531324041, 561324041, 699023791, 699023891, 874481011, 874487011, 1862537503, 2232483271, 2232483871, 2608559351, 3127181789, 3157181789, 3928401949, 3928401989, 4070171669, 4070171969, 5225628323, 5309756339, 5525628323
Offset: 1
Links
- Michael Kleber, Table of n, a(n) for n = 1..66
Programs
-
Mathematica
NeighborsAndSelf[n_] := Flatten[MapIndexed[Table[ n + (i - #)*10^(#2[[1]] - 1), {i, 0, 9}] &, Reverse[IntegerDigits[n, 10]]]] PrimeNeighbors[n_] := Complement[Select[NeighborsAndSelf[n],PrimeQ],{n}] WeaklyTwinPrime[p_] := (Length[#] == 1 && PrimeNeighbors[#[[1]]] == {p}) &[PrimeNeighbors[p]] For[k = 0, k <= PrimePi[10^10], k++, If[WeaklyTwinPrime[Prime[k]], Print[Prime[k]]]]
Comments