This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253276 #14 Feb 26 2017 10:50:56 %S A253276 1,1,7,120,3157,109935,4754200,245722477,14779601837,1014260971581, %T A253276 78214593177825,6696084566881710,630196627700087272, %U A253276 64671387743952373150,7186999700934499032405,859879811676654352591875,110201017079975901129209565,15061748014412378814910531365 %N A253276 Number of undirected labeled graphs on 2n nodes with exactly n cycle graphs as connected components. %H A253276 Alois P. Heinz, <a href="/A253276/b253276.txt">Table of n, a(n) for n = 0..200</a> %F A253276 a(n) = A215771(2n,n). %F A253276 a(n) ~ c * d^n * (n-1)!, where d = 8.52944416851968239902405793921886268..., c = 0.1101477123991489575407024889... . - _Vaclav Kotesovec_, May 01 2015 %p A253276 b:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1, %p A253276 add(binomial(n-1, i)*b(n-1-i, k-1)*ceil(i!/2), i=0..n-k))) %p A253276 end: %p A253276 a:= n-> b(2*n, n): %p A253276 seq(a(n), n=0..20); %t A253276 b[n_, k_] := b[n, k] = If[k<0 || k>n, 0, If[n==0, 1, Sum[Binomial[n-1, i]*b[n-1-i, k-1]*Ceiling[i!/2], {i, 0, n-k}]]]; a[n_] := b[2 n, n]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 26 2017, translated from Maple *) %Y A253276 Cf. A215771. %K A253276 nonn %O A253276 0,3 %A A253276 _Alois P. Heinz_, May 01 2015