This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253279 #21 Aug 12 2018 21:27:53 %S A253279 1,2,6,3,12,4,10,5,20,8,14,16,18,9,15,21,7,28,22,24,26,30,25,35,40,32, %T A253279 34,36,38,42,27,33,39,45,48,56,44,70,46,50,52,13,65,60,51,75,55,66,54, %U A253279 57,72,58,62,64,68,78,63,69,81,84,80,74,76,82,41 %N A253279 Arrange numbers in a clockwise spiral with initial terms a(1)=1, a(2)=2, a(4)=3, a(6)=4, a(8)=5; thereafter each number shares a factor with each of its four (N,S,E,W) neighbors. %C A253279 Start with smallest number which has not yet appeared and satisfies the conditions: a(3)=6; thereafter always choose smallest number which has not yet appeared and satisfies the conditions. %C A253279 This is a two-dimensional spiral analog of EKG sequence A064413. %C A253279 In A064413 we have initial terms in the positions 1,2. %C A253279 In the two-dimensional case we have 4 sides. %C A253279 So the initial TERMS are %C A253279 5 %C A253279 4 1 2 (1) %C A253279 3 %C A253279 But the POSITIONS in the spiral are indexed thus: %C A253279 . %C A253279 7--8--9--10 %C A253279 | %C A253279 6 1--2 %C A253279 | | %C A253279 5--4--3 %C A253279 . %C A253279 So the initial terms, by (1), are a(1)=1, a(2)=2, a(4)=3, a(6)=4, a(8)=5. %C A253279 Conjecture: The sequence is a permutation of the positive integers. - _Vladimir Shevelev_, May 06 2015 %H A253279 Peter J. C. Moses, <a href="/A253279/b253279.txt">Table of n, a(n) for n = 1..5625</a> %H A253279 Peter J. C. Moses, <a href="/A253279/a253279.pdf">The first few squares.</a> %e A253279 The spiral begins %e A253279 . %e A253279 26--30--25--35--40--32 etc. %e A253279 | %e A253279 24 10---5--20---8 %e A253279 | | | %e A253279 22 4 1---2 14 %e A253279 | | | | %e A253279 28 12---3---6 16 %e A253279 | | %e A253279 7--21--15---9--18 %Y A253279 Cf. A064413, A257321-A257340, A257112. %K A253279 nonn %O A253279 1,2 %A A253279 _Vladimir Shevelev_, May 02 2015 %E A253279 Correction of a(42) and more terms from _Peter J. C. Moses_, May 03 2015