This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253281 #9 May 06 2015 09:48:05 %S A253281 0,1,2,1,3,2,3,3,3,4,4,4,3,5,5,4,5,4,5,6,5,3,5,5,5,6,6,4,4,4,5,6,6,6, %T A253281 5,5,4,5,4,6,7,6,5,6,5,5,5,5,5,7,7,5,6,6,6,6,6,5,6,6,7,6,6,6,7,7,6,7, %U A253281 6,6,7,6,6,7,6,7,8,7,6,7,7,6,7,7,5,7 %N A253281 Triangular array read by rows: T(h,k) = number of steps from (h,k) to (0,0), where allowable steps are as follows: (x,y) -> (x-r, y) if r > 0, and (x,y) -> (y, r/3) otherwise, where r = x mod 3. %C A253281 For n >= 3, the number of pairs (h,k) satisfying T(h,k) = n is A078008(n+1) for n >= 0. The number of pairs of the form (h,0) satisfying T(h,0) = n is A253718(n). %H A253281 Clark Kimberling, <a href="/A253281/b253281.txt">Table of n, a(n) for n = 1..1000</a> %e A253281 First ten rows: %e A253281 0 %e A253281 1 2 %e A253281 1 3 2 %e A253281 3 3 3 4 %e A253281 4 4 3 5 5 %e A253281 4 5 4 5 6 5 %e A253281 3 5 5 5 6 6 4 %e A253281 4 4 5 6 6 6 5 5 %e A253281 4 5 4 6 7 6 5 6 5 %e A253281 5 5 5 5 7 7 5 6 6 6 %e A253281 Row 3 counts the pairs (2,0), (1,1), (0,2), for which the paths are as shown here: %e A253281 (2,0) -> (0,0) (1 step) %e A253281 (1,1) -> (0,1) -> (1,0) -> (0,0) (3 steps) %e A253281 (0,2) -> (2,0) -> (0,0) (2 steps) %t A253281 f[{x_, y_}] := If[IntegerQ[x/3], {y, x/3}, {x - Mod[x, 3], y}]; %t A253281 g[{x_, y_}] := Drop[FixedPointList[f, {x, y}], -1]; %t A253281 h[{x_, y_}] := -1 + Length[g[{x, y}]]; %t A253281 t = Table[h[{n - k, k}], {n, 0, 20}, {k, 0, n}]; %t A253281 TableForm[t] (* A253281 array *) %t A253281 Flatten[t] (* A253281 sequence *) %Y A253281 Cf. A078008, A257569, A253718. %K A253281 nonn,tabl,easy %O A253281 1,3 %A A253281 _Clark Kimberling_, May 02 2015