This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253288 #26 Dec 11 2022 10:31:17 %S A253288 1,4,9,2,25,12,49,16,3,20,121,6,169,28,45,8,289,18,361,10,63,44,529, %T A253288 36,5,52,81,14,841,60,961,64,99,68,175,24,1369,76,117,50,1681,84,1849, %U A253288 22,15,92,2209,48,7,40,153,26,2809,72,275,98,171,116,3481,30,3721,124,21,32 %N A253288 Each term a(n) satisfies four properties: 1, divisible by all prime factors of n; 2, divisible by only the prime factors of n; 3, not equal to any of the terms a(1), a(2), ... a(n-1); 4, smallest number satisfying 1-3 if A005361(n) is even, or second smallest number satisfying 1-3 if A005361(n) is odd. %C A253288 This sequence is permutation of the positive integers. %C A253288 The prime p occurs at n = p^2. %C A253288 Multiples of a number x have density 1/x. %C A253288 Conjecture: this permutation of positive integers is self-inverse. Compare with A358971. The principal distinction between this sequence and A358971 is that fixed points aside from A358971(1) = 1 are explicitly ruled out in the latter. - _Michael De Vlieger_, Dec 10 2022 %D A253288 Brad Klee, Posting to Sequence Fans Mailing List, Dec 21, 2014. %H A253288 Michael De Vlieger, <a href="/A253288/b253288.txt">Table of n, a(n) for n = 1..10000</a> %H A253288 Michael De Vlieger, <a href="/A253288/a253288.png">Log log scatterplot of a(n)</a>, n = 1..2^20. %H A253288 Michael De Vlieger, <a href="/A253288/a253288_1.png">Log log scatterplot of a(n) <= 12000</a>, n = 1..2^10 showing primes in red, other prime powers (in A246547) in gold, squarefree composites (in A120944) in green, numbers neither squarefree nor prime power (in A120706) in blue and magenta. The terms in magenta are products of composite prime powers (in A286708). %H A253288 Michael De Vlieger, <a href="/A253288/a253288_2.png">Log log scatterplot of a(n) <= 2^14</a>, n = 1..2^14, showing a(n) such that rad(n) = 6 in red, and A358971(n) such that rad(n) = 6 in blue for comparison. This is an example of a self-inverse relation among terms a(n) in A003586. %H A253288 Michael De Vlieger, <a href="/A253288/a253288_3.png">Log log scatterplot of a(n) <= 80000</a>, n = 1..2^14, showing a(n) in tiny black points if a(n) = A358971(n), else a(n) in red, and A358971(n) in blue. %H A253288 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %p A253288 A253288div := proc(a,n) %p A253288 local npr,d,apr ; %p A253288 npr := numtheory[factorset](n) ; %p A253288 for d in npr do %p A253288 if modp(a,d) <> 0 then %p A253288 return false; %p A253288 end if; %p A253288 end do: %p A253288 apr := numtheory[factorset](a) ; %p A253288 if apr minus npr = {} then %p A253288 true; %p A253288 else %p A253288 false; %p A253288 end if; %p A253288 end proc: %p A253288 A253288 := proc(n) %p A253288 option remember; %p A253288 local a,i,prev,act,ev ; %p A253288 if n =1 then %p A253288 1; %p A253288 else %p A253288 act := 1 ; %p A253288 if type(A005361(n),'even') then %p A253288 ev := true; %p A253288 else %p A253288 ev := false; %p A253288 end if; %p A253288 for a from 1 do %p A253288 prev := false; %p A253288 for i from 1 to n-1 do %p A253288 if procname(i) = a then %p A253288 prev := true; %p A253288 break; %p A253288 end if; %p A253288 end do: %p A253288 if not prev then %p A253288 if A253288div(a,n) then %p A253288 if ev or act > 1 then %p A253288 return a; %p A253288 else %p A253288 act := act+1 ; %p A253288 end if; %p A253288 end if; %p A253288 end if; %p A253288 end do: %p A253288 end if; %p A253288 end proc: %p A253288 seq(A253288(n),n=1..80) ; # _R. J. Mathar_, Jan 22 2015 %t A253288 nn = 1000; c[_] = False; q[_] = 1; f[n_] := f[n] = Map[Times @@ # &, Transpose@ FactorInteger[n]]; a[1] = 1; c[1] = True; u = 2; Do[Which[PrimeQ[n], k = n^2, PrimeQ@ Sqrt[n], k = Sqrt[n], SquareFreeQ[n], k = First@ f[n]; m = q[k]; While[Nand[! c[k m], k m != n, Divisible[k, First@ f[m]]], m++]; While[Nor[c[q[k] k], Divisible[k, First@ f[q[k]]]], q[k]++]; k *= m, True, t = 0; Set[{k, s}, {First[#], 1 + Boole@ OddQ@ Last[#]} &[f[n]]]; m = q[k]; Until[t == s, If[m > q[k], m++]; While[Nand[! c[k m], Divisible[k, First@f[m]]], m++]; t++]; If[s == 1, While[Nor[c[q[k] k], Divisible[k, First@ f[q[k]]]], q[k]++]]; k *= m]; Set[{a[n], c[k]}, {k, True}]; If[k == u, While[c[u], u++]], {n, 2, nn}]; Array[a, nn] (* _Michael De Vlieger_, Dec 10 2022 *) %Y A253288 Cf. A005361 (Product of exponents of prime factorization of n), A358971. %K A253288 nonn %O A253288 1,2 %A A253288 _N. J. A. Sloane_, Dec 29 2014 %E A253288 Terms beyond 361 from _R. J. Mathar_, Jan 22 2015