A253290 Number of (n+1)X(2+1) 0..2 arrays with every 2X2 subblock sum differing from its neighbors horizontally, vertically, diagonally and antidiagonally.
558, 3600, 23546, 167832, 1184928, 8243488, 57474376, 402165016, 2811886280, 19648735840, 137308874176, 959744819720, 6708131042848, 46884212361800, 327678437410752, 2290232105294136, 16007076725008072, 111877100758327680
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..1....0..0..1....1..0..0....0..0..1....1..0..0....1..2..0....1..2..1 ..0..0..2....0..0..2....1..0..0....1..2..2....0..1..0....2..2..1....0..2..2 ..0..0..1....1..0..0....1..1..0....1..2..2....1..1..2....0..0..0....0..0..2 ..0..2..1....0..2..2....0..2..2....0..1..0....1..2..1....0..1..1....0..1..0 ..0..1..2....0..0..2....2..2..1....0..1..1....0..0..1....2..0..2....2..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 4*a(n-1) +22*a(n-2) -47*a(n-3) +847*a(n-4) -2548*a(n-5) -14241*a(n-6) +46156*a(n-7) -235684*a(n-8) +513456*a(n-9) +3142562*a(n-10) -12248092*a(n-11) +34872668*a(n-12) -44225096*a(n-13) -327631492*a(n-14) +1356943312*a(n-15) -3049192352*a(n-16) +2235968632*a(n-17) +17503809584*a(n-18) -67675653456*a(n-19) +140372058144*a(n-20) -119547407360*a(n-21) -386660564160*a(n-22) +1410208318912*a(n-23) -2855898321408*a(n-24) +4453728916224*a(n-25) -381216535552*a(n-26) -12897724549120*a(n-27) +35949674973184*a(n-28) -73144228077568*a(n-29) +67153529954304*a(n-30) +54469989974016*a(n-31) -290876893462528*a(n-32) +505744121200640*a(n-33) -360592985554944*a(n-34) -244530708480000*a(n-35) +1126160419258368*a(n-36) -1315197520183296*a(n-37) -66806203023360*a(n-38) +1063245997670400*a(n-39) -489223618560000*a(n-40)
Comments