This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253295 #22 May 22 2025 10:21:41 %S A253295 8,32,52,22113,5317113,131167110613,1711111711229181533, %T A253295 1761140131560305063481,1313718313871371493773936301, %U A253295 125111501315199577167049112574051,33185242436199338915435977096119517,149731486009055371137303679066123116017 %N A253295 Prime factor look-and-say sequence starting with a(0) = 8. %C A253295 If prime factorization of a(n) is p_1^d_1 p_2^d_2 ... p_k^d_k with p_1 < ... < p_k, then a(n+1) is the concatenation of d_1, p_1, d_2, p_2, ..., d_k, p_k. %C A253295 I suspect that eventually a prime a(n) may be reached, but haven't found one yet. %H A253295 Robert Israel, <a href="/A253295/b253295.txt">Table of n, a(n) for n = 0..20</a> %H A253295 Mathematics Stack Exchange, <a href="http://math.stackexchange.com/questions/1084853/does-my-prime-factor-look-and-say-sequence-always-end/1084908#1084908">Does my "Prime Factor Look and Say" sequence always end?</a> %F A253295 a(n+1) = A123132(a(n)). %e A253295 a(0) = 2^3 so a(1) = 32. %e A253295 a(1) = 2^5 so a(2) = 52. %e A253295 a(2) = 2^2 * 13^1 so a(3) = 22113. %e A253295 a(3) = 3^5 * 7^1 * 13^1 so a(4) = 5317113. %p A253295 ncat:= (x,y) -> 10^(1+ilog10(y))*x + y: %p A253295 f:= proc(x) local L,y,t; %p A253295 L:= sort(ifactors(x)[2],(a,b)->a[1]<b[1]); %p A253295 y:= 0; %p A253295 for t in L do y := ncat(y, ncat(t[2],t[1])) od: %p A253295 y %p A253295 end proc: %p A253295 A[0]:= 8: %p A253295 y:= A[0]: %p A253295 for m from 1 to 20 do %p A253295 y:= f(y); %p A253295 A[m]:= y; %p A253295 od: %p A253295 seq(A[i],i=0..20); %t A253295 a253295[n_] := Block[{a, t = Table[8, {n}]}, %t A253295 a[x_] := FromDigits[Flatten[IntegerDigits[Reverse /@ %t A253295 FactorInteger[x]]]]; Do[t[[i]] = a[t[[i - 1]]], {i, 2, n}]; t]; %t A253295 a253295[13] (* _Michael De Vlieger_, Dec 29 2014 *) %o A253295 (Python) %o A253295 from sympy import factorint %o A253295 A253295_list = [8] %o A253295 for _ in range(10): %o A253295 A253295_list.append(int(''.join((str(e)+str(p) for p, e in sorted(factorint(A253295_list[-1]).items()))))) %o A253295 # _Chai Wah Wu_, Dec 30 2014 %Y A253295 Cf. A123132 %K A253295 nonn,base %O A253295 0,1 %A A253295 _Robert Israel_, Dec 29 2014