cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253301 Complement of the Beatty sequence for sqrt(Pi*phi), where phi is the golden ratio.

This page as a plain text file.
%I A253301 #17 Feb 16 2025 08:33:24
%S A253301 1,3,5,7,8,10,12,14,16,17,19,21,23,25,26,28,30,32,34,35,37,39,41,43,
%T A253301 44,46,48,50,52,53,55,57,59,61,62,64,66,68,70,71,73,75,77,79,80,82,84,
%U A253301 86,88,89,91,93,95,97,98,100,102,104,106,107,109,111,113,115
%N A253301 Complement of the Beatty sequence for sqrt(Pi*phi), where phi is the golden ratio.
%H A253301 Colin Barker, <a href="/A253301/b253301.txt">Table of n, a(n) for n = 1..10000</a>
%H A253301 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>
%F A253301 a(n) = floor(n*sqrt(Pi*phi)/(sqrt(Pi*phi)-1)), where phi is the golden ratio.
%t A253301 Table[Floor[n*Sqrt[Pi*GoldenRatio]/(Sqrt[Pi*GoldenRatio] - 1)], {n, 1, 100}] (* _G. C. Greubel_, Jan 09 2017 *)
%o A253301 (PARI) phi = (sqrt(5)+1)/2; vector(100, n, floor(n*sqrt(Pi*phi) / (sqrt(Pi*phi)-1)))
%Y A253301 Cf. A252169, A001622 (golden ratio, phi), A094886 (Pi*phi).
%K A253301 nonn
%O A253301 1,2
%A A253301 _Colin Barker_, Dec 30 2014