This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A253317 #43 May 23 2024 00:49:12 %S A253317 0,1,2,3,8,9,10,11,128,129,130,131,136,137,138,139,32768,32769,32770, %T A253317 32771,32776,32777,32778,32779,32896,32897,32898,32899,32904,32905, %U A253317 32906,32907,2147483648,2147483649,2147483650,2147483651,2147483656,2147483657 %N A253317 Indices in A261283 where records occur. %C A253317 From _Gus Wiseman_, Dec 29 2023: (Start) %C A253317 These are numbers whose binary indices are all powers of 2, where a binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, the terms together with their binary expansions and binary indices begin: %C A253317 0: 0 ~ {} %C A253317 1: 1 ~ {1} %C A253317 2: 10 ~ {2} %C A253317 3: 11 ~ {1,2} %C A253317 8: 1000 ~ {4} %C A253317 9: 1001 ~ {1,4} %C A253317 10: 1010 ~ {2,4} %C A253317 11: 1011 ~ {1,2,4} %C A253317 128: 10000000 ~ {8} %C A253317 129: 10000001 ~ {1,8} %C A253317 130: 10000010 ~ {2,8} %C A253317 131: 10000011 ~ {1,2,8} %C A253317 136: 10001000 ~ {4,8} %C A253317 137: 10001001 ~ {1,4,8} %C A253317 138: 10001010 ~ {2,4,8} %C A253317 139: 10001011 ~ {1,2,4,8} %C A253317 For powers of 3 we have A368531. %C A253317 (End) %H A253317 Michael De Vlieger, <a href="/A253317/b253317.txt">Table of n, a(n) for n = 1..4096</a> %H A253317 Lorenzo Sauras-Altuzarra, <a href="https://arxiv.org/abs/2002.03075">Some arithmetical problems that are obtained by analyzing proofs and infinite graphs</a>, arXiv:2002.03075 [math.NT], 2020. %F A253317 a(1) = 0 and a(n) = a(n-A053644(n-1)) + 2^(A053644(n-1)-1). - _Lorenzo Sauras Altuzarra_, Dec 18 2019 %F A253317 a(n) = A358126(n-1) / 2. - _Tilman Piesk_, Dec 18 2022 %F A253317 a(2^n+1) = 2^(2^n-1) = A058891(n+1). - _Gus Wiseman_, Dec 29 2023 %F A253317 a(2^n) = A072639(n). - _Gus Wiseman_, Dec 29 2023 %F A253317 G.f.: 1/(1-x) * Sum_{k>=0} (2^(-1+2^k))*x^2^k/(1+x^2^k). - _John Tyler Rascoe_, May 22 2024 %p A253317 a := proc(n) local k, A: %p A253317 A := [seq(0,i=1..n)]: A[1]:=0: %p A253317 for k from 1 to n-1 do %p A253317 A[k+1] := A[k-2^ilog2(k)+1]+2^(2^ilog2(k)-1): od: %p A253317 return A[n]: end proc: # _Lorenzo Sauras Altuzarra_, Dec 18 2019 %p A253317 # second Maple program: %p A253317 a:= n-> (l-> add(l[i+1]*2^(2^i-1), i=0..nops(l)-1))(Bits[Split](n-1)): %p A253317 seq(a(n), n=1..38); # _Alois P. Heinz_, Dec 13 2023 %t A253317 Nest[Append[#1, #1[[-#2]] + 2^(#2 - 1)] & @@ {#, 2^(IntegerLength[Length[#], 2] - 1)} &, {0, 1}, 36] (* _Michael De Vlieger_, May 08 2020 *) %o A253317 (PARI) a(n)={if(n<=1, 0, my(t=1<<logint(n-1, 2)); a(n-t) + 2^(t-1))} \\ _Andrew Howroyd_, Dec 20 2019 %Y A253317 Cf. A053644 (most significant bit). %Y A253317 A048793 lists binary indices, length A000120, sum A029931. %Y A253317 A070939 gives length of binary expansion. %Y A253317 A096111 gives product of binary indices. %Y A253317 Cf. A058891, A062050, A072639, A326031, A326675, A326702, A367771, A367912, A368183, A368109, A368531. %K A253317 nonn,base %O A253317 1,3 %A A253317 _Philippe Beaudoin_, Dec 30 2014 %E A253317 Corrected reference in name from A253315 to A261283. - _Tilman Piesk_, Dec 18 2022