cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253333 Primes in the 7th-order Fibonacci numbers A060455.

This page as a plain text file.
%I A253333 #20 May 08 2015 15:15:49
%S A253333 7,13,97,193,769,1531,3049,6073,12097,24097,95617,379399,2998753,
%T A253333 187339729,373174033,2949551617,184265983633,731152932481,
%U A253333 88025699967469825543,175344042716296888429,4979552865927484193343796114081304399449
%N A253333 Primes in the 7th-order Fibonacci numbers A060455.
%C A253333 a(22) is too large to display here. It has 53 digits and is the 180th term in A060455.
%H A253333 Robert G. Wilson v, <a href="/A253333/b253333.txt">Table of n, a(n) for n = 1..34</a>
%t A253333 a={1,1,1,1,1,1,1}; step=7; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[7]]=sum]; lst
%t A253333 With[{c=PadRight[{},7,1]},Select[LinearRecurrence[c,c,150],PrimeQ]] (* _Harvey P. Dale_, May 08 2015 *)
%o A253333 (PARI) lista(nn) = {gf = ( -1+x^2+2*x^3+3*x^4+4*x^5+5*x^6 ) / ( -1+x+x^2+x^3+x^4+x^5+x^6+x^7 ); for (n=0, nn, if (isprime(p=polcoeff(gf+O(x^(n+1)), n)), print1(p, ", ")););} \\ _Michel Marcus_, Jan 11 2015
%Y A253333 Cf. A001590, A001631, A100683, A231574, A231575, A232543, A214899, A020992, A233554, A214727, A234696, A141523, A235862, A214825, A235873, A001630, A241660, A247027, A000288, A247561, A000322, A248920, A000383, A247192, A060455, A253318.
%K A253333 nonn
%O A253333 1,1
%A A253333 _Robert Price_, Dec 30 2014