cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253382 Triangle read by rows: T(n,k) appears in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} T(n,k)*(x-2k)^k.

This page as a plain text file.
%I A253382 #7 Jan 14 2015 15:25:03
%S A253382 1,5,2,5,26,3,5,170,75,4,5,810,1035,164,5,5,3210,10635,3764,305,6,5,
%T A253382 11274,91275,64244,10385,510,7,5,36362,693387,910964,261265,24030,791,
%U A253382 8,5,110090,4822155,11361908,5422225,830430,49175,1160,9,5,317450,31364235,128935028,98319505,23510430,2226455,91880,1629,10
%N A253382 Triangle read by rows: T(n,k) appears in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} T(n,k)*(x-2k)^k.
%C A253382 Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = T(n,0)*(x-0)^0 + T(n,1)*(x-2)^1 + T(n,2)*(x-4)^2 + ... + T(n,n)*(x-2n)^n, for n >= 0.
%F A253382 T(n,n) = n+1, n >= 0.
%F A253382 T(n,n-1) = n + 2*n^2 + 2*n^3 = A046395(n), for n >= 1.
%F A253382 T(n,n-2) = (n-1)*(2*n^4-2*n^3-2*n^2-2*n+1), for n >= 2.
%F A253382 T(n,n-3) = (n-2)*(4*n^6-24*n^5+38*n^4-6*n^3+12*n^2-36*n+15)/3, for n >= 3.
%e A253382 From _Wolfdieter Lang_, Jan 14 2015: (Start)
%e A253382 The triangle T(n,k) starts:
%e A253382 n\k 0      1        2         3        4        5       6     7    8  9 ...
%e A253382 0:  1
%e A253382 1:  5
%e A253382 2:  5     26        3
%e A253382 3:  5    170       75         4
%e A253382 4:  5    810     1035       164        5
%e A253382 5:  5   3210    10635      3764      305        6
%e A253382 6:  5  11274    91275     64244    10385      510       7
%e A253382 7:  5  36362   693387    910964   261265    24030     791     8
%e A253382 8:  5 110090  4822155  11361908  5422225   830430   49175  1160    9
%e A253382 9:  5 317450 31364235 128935028 98319505 23510430 2226455 91880 1629 10
%e A253382 ... Reformatted.
%e A253382 ----------------------------------------------------------------------------
%e A253382 n = 3: 1 + 2*x + 3*x^2 + 4*x^3 = 5*(x-0)^0 +  170*(x-2)^1 + 75*(x-4)^2 + 4*(x-6)^3. (End)
%o A253382 (PARI) T(n, k)=(k+1)-sum(i=k+1, n, (-2*i)^(i-k)*binomial(i, k)*T(n, i))
%o A253382 for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")))
%Y A253382 Cf. A253381, A247236, A247237.
%K A253382 nonn,tabl
%O A253382 0,2
%A A253382 _Derek Orr_, Dec 30 2014
%E A253382 Edited. - _Wolfdieter Lang_, Jan 14 2015