A253384 Triangle read by rows: T(n,k) appears in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} T(n,k)*(x+3k)^k.
1, -5, 2, -5, -34, 3, -5, 290, -105, 4, -5, -1870, 2055, -236, 5, -5, 10280, -30345, 7864, -445, 6, -5, -50956, 377895, -196256, 22235, -750, 7, -5, 234812, -4194393, 4090264, -824485, 52170, -1169, 8, -5, -1024900, 42834855, -75271592, 25302875, -2669430, 107695, -1720, 9
Offset: 0
Examples
The triangle T(n,k) starts: n\k 0 1 2 3 4 5 6 7 ... 0: 1 1: -5 2 2: -5 -34 3 3: -5 290 -105 4 4: -5 -1870 2055 -236 5 5: -5 10280 -30345 7864 -445 6 6: -5 -50956 377895 -196256 22235 -750 7 7: -5 234812 -4194393 4090264 -824485 52170 -1169 8 ... ----------------------------------------------------------------- n = 3: 1 + 2*x + 3*x^2 + 4*x^3 = -5*(x+0)^0 + 290*(x+3)^1 - 105*(x+6)^2 + 4*(x+9)^3.
Programs
-
PARI
T(n, k)=(k+1)-sum(i=k+1, n, (3*i)^(i-k)*binomial(i, k)*T(n, i)) for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")))
Formula
T(n,n) = n + 1, n >= 0.
T(n,n-1) = n - 3*n^2 - 3*n^3, for n >= 1.
T(n,n-2) = (n-1)*(9*n^4 - 9*n^3 - 24*n^2 + 6*n + 2)/2, for n >= 2.
T(n,n-3) = (2-n)*(9*n^6 - 54*n^5 + 63*n^4 + 99*n^3 - 138*n^2 + 9*n + 10)/2, for n >= 3.
Extensions
Edited; name changed, cross references added. - Wolfdieter Lang, Jan 22 2015
Comments