A253389 a(n) is the repeating digit pattern in penultimate digit of successive powers of n (omitting initial powers without at least two digits).
13625124998637487500, 28428684442602686000, 1652983470, 2, 31975, 4400, 61964512293803548770, 8264462800, 0, 1234567890, 14233809528576619047, 16969012743858543270, 9412305876, 27, 15937, 18125674943632987050, 2376, 1652983470, 0, 24680, 84530839221546916077, 22644848642280060680, 27, 2, 7, 22840808842260464660, 28556013027144398697, 2488420660, 0
Offset: 2
Examples
Powers of 2: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096... Second-to-the-last digits, skipping the one-digit powers: 1,3,6,2,5,1,2,4,9,9,8,6,3,7,4,8,7,5,0,0,... Find repeating pattern and concatenate digits: 13625124998637487500 10 does not repeat its penultimate digit (1), so a(10)=0.
Crossrefs
Cf. A160590 (penultimate digit of 2^n).
Extensions
Missing a(8) inserted by Walter Roscello, Jan 22 2023
a(12)-a(30) from Lerong Zhu, May 10 2024
Comments