A253391 Number of (n+1) X (2+1) 0..1 arrays with every 2 X 2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.
44, 102, 143, 197, 250, 320, 391, 477, 564, 666, 769, 887, 1006, 1140, 1275, 1425, 1576, 1742, 1909, 2091, 2274, 2472, 2671, 2885, 3100, 3330, 3561, 3807, 4054, 4316, 4579, 4857, 5136, 5430, 5725, 6035, 6346, 6672, 6999, 7341, 7684, 8042, 8401, 8775, 9150
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..1..1....1..1..1....0..1..1....1..1..1....1..1..1....0..1..0....1..0..1 ..1..1..1....1..1..0....0..0..0....1..1..0....0..1..0....1..1..0....0..0..0 ..1..1..0....1..1..1....0..0..1....0..1..0....0..1..0....1..1..0....0..1..0 ..0..1..0....0..0..0....0..0..1....0..1..0....0..1..0....1..1..1....0..1..0 ..0..1..0....0..1..1....0..0..1....0..1..0....0..1..0....1..0..0....0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A253397.
Formula
Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>8.
Empirical for n mod 2 = 0: a(n) = 4*n^2 + (45/2)*n + 41 for n>4.
Empirical for n mod 2 = 1: a(n) = 4*n^2 + (45/2)*n + (75/2) for n>4.
Empirical g.f.: x*(44 + 14*x - 61*x^2 - x^3 + 16*x^4 + 4*x^5 + 2*x^6 - 2*x^7) / ((1 - x)^3*(1 + x)). - Colin Barker, Dec 11 2018