A253393 Number of (n+1) X (4+1) 0..1 arrays with every 2 X 2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.
180, 197, 246, 346, 465, 632, 823, 1071, 1351, 1695, 2079, 2535, 3039, 3623, 4263, 4991, 5783, 6671, 7631, 8695, 9839, 11095, 12439, 13903, 15463, 17151, 18943, 20871, 22911, 25095, 27399, 29855, 32439, 35183, 38063, 41111, 44303, 47671, 51191, 54895
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0..0..0....1..1..1..1..1....1..1..1..1..1....1..1..1..1..1 ..0..0..0..0..0....1..1..1..1..1....1..1..1..1..1....1..1..1..1..1 ..0..0..0..0..0....1..1..1..1..0....1..1..1..1..1....1..1..1..0..0 ..0..0..0..1..0....1..1..1..1..1....1..1..1..1..1....1..1..1..1..1 ..1..1..0..1..0....0..1..0..0..0....0..1..1..1..0....1..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A253397.
Formula
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>11.
Empirical for n mod 2 = 0: a(n) = (2/3)*n^3 + 7*n^2 + (70/3)*n + 95 for n>6.
Empirical for n mod 2 = 1: a(n) = (2/3)*n^3 + 7*n^2 + (70/3)*n + 88 for n>6.
Empirical g.f.: x*(180 - 343*x + 15*x^2 + 362*x^3 - 227*x^4 + 10*x^5 + 8*x^6 + 4*x^7 - x^8 - x^9 + x^10) / ((1 - x)^4*(1 + x)). - Colin Barker, Dec 11 2018