A253395 Number of (n+1) X (6+1) 0..1 arrays with every 2 X 2 subblock antidiagonal maximum minus diagonal minimum nondecreasing horizontally and diagonal maximum minus antidiagonal minimum nondecreasing vertically.
476, 320, 419, 632, 932, 1318, 1855, 2528, 3408, 4498, 5864, 7521, 9542, 11949, 14824, 18197, 22158, 26745, 32056, 38137, 45094, 52981, 61912, 71949, 83214, 95777, 109768, 125265, 142406, 161277, 182024, 204741, 229582, 256649, 286104, 318057
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0..1..0..1..1....1..1..1..0..0..0..1....1..1..1..1..1..1..1 ..0..1..0..1..0..1..0....1..1..1..1..1..1..1....1..1..1..0..0..0..0 ..0..1..0..1..0..1..0....1..1..0..0..0..0..0....1..1..1..1..1..1..1 ..0..1..0..1..0..1..0....1..1..1..1..1..1..1....1..0..0..0..0..0..0 ..0..1..0..1..0..1..0....0..0..0..0..0..0..0....0..0..1..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 6 of A253397.
Formula
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>16.
Empirical for n mod 2 = 0: a(n) = (1/6)*n^4 + (185/6)*n^2 - 61*n + 357 for n>10.
Empirical for n mod 2 = 1: a(n) = (1/6)*n^4 + (185/6)*n^2 - 61*n + 364 for n>10.
Empirical g.f.: x*(476 - 1584*x + 1519*x^2 + 556*x^3 - 1881*x^4 + 1054*x^5 - 48*x^6 - 106*x^7 + 20*x^8 + 12*x^9 - 23*x^10 + 17*x^11 - 5*x^12 + 2*x^14 - x^15) / ((1 - x)^5*(1 + x)). - Colin Barker, Dec 12 2018